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Preface

This report contains reprints of two journal papers. The first paper, “A Continuum Framework
for Finite Viscoplasticity,”! provides a continuum thermodynamic framework for finite
deformation viscoplasticity based on the multiplicative decomposition of the deformation
gradient with internal state variables. The second paper, “Classes of Flow Rules for Finite
Viscoplasticity,”? compares several classes of flow rules within the framework of the first paper.

1 Reprinted from the International Journal of Plasticity, vol. 17, Mike Scheidler and T. W. Wright, “A Continuum Framework for Finite
Viscoplasticity,” pp. 10331085, 2001, with permission from Elsevier.

2 Reprinted from the International Journal of Plasticity, vol. 19, Mike Scheidler and T. W. Wright, “Classes of Flow Rules for Finite
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Abstract

A continuum framework for finite viscoplasticity is developed based on Lee’s multiplicative
decomposition with internal variables. Noteworthy features include a thermodynamically
consistent treatment of the storage of cold work and plastic volume change and a careful
examination of the restrictions imposed by the entropy inequality and the property of
instantaneous thermoelastic response. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

More than 30 years have passed since E.H. Lee (1969) introduced the idea of
decomposing the deformation gradient into multiplicative elastic and plastic parts
for truly finite deformations. The theory has developed on many fronts in that time
and has been applied to many practical problems and calculations. Nevertheless, it
seems fair to say that there is not yet a version of the theory that commands the
same widespread acceptance routinely given to finite elasticity. It has seemed to us
that the reason for this lack of universal agreement lies in the very foundations of
the theory and therefore that a reexamination of those foundations would probably
be worthwhile and clarifying for many issues. It is the purpose of this paper to begin
that reexamination. Throughout the paper arbitrarily anisotropic materials are
considered.

The discussion opens in Section 2 with a statement of what we conceive to be the
primary physical basis for a theory of plastic deformation in crystalline bodies. The
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central observation is that even in the presence of very large numbers of dislocations
and other defects, the average spacing of dislocations is much larger than lattice
dimensions. Therefore, a plastically deformed body should remain essentially elastic
in the way that stresses are generated from lattice extension and distortion and in the
way that forces are transmitted to adjacent material. Defects further distort the
material and give rise to locally self-equilibrated, but still elastic stresses. The total
elastic energy must then include contributions from these equilibrated fluctuations
as well as from the mean extension and distortion of the lattice. Rather than using
the details or statistics of dislocation density, we choose to represent the contribu-
tion from fluctuations by internal variables that are designed to capture the phe-
nomenology of plastic deformation.

The standard multiplicative decomposition of the deformation gradient is
assumed, and some of the fundamental kinematic issues associated with the decom-
position are raised in Section 3. The intermediate configuration is regarded as a
reference configuration for finite elastic deformation, and the second Piola-Kirchh-
off stress tensor is defined with respect to it. Plastic deformation is further divided
into volumetric and isochoric parts to take explicit account of possible plastic
volume changes. The effect of superposed rigid motions is examined next, and some
of the principal transformation rules are established. In particular, the plastic part of
the deformation gradient is regarded as invariant under rigid body motions. This
last supposition is consistent with the notion that all the crystalline defects, which
are the origin of plastic deformation, are invariant under rigid motions. In effect, the
added rigid motion is regarded as part of the elastic deformation only. In one useful
approximate case, the elastic shear strains are small, but elastic rotation and volume
change may be large to allow for large rigid motion and high pressure.

Thermodynamic restrictions on material response are discussed in Section 4. First
the balance laws for momentum and energy are introduced, and the total stress
power is expressed in both the current and initial configurations. Then the reduced
entropy inequality, based on a form often used in continuum mechanics, is stated in
terms of the Helmholz free energy per unit mass. Next the stress power is partitioned
into elastic and plastic parts, both of which may also be expressed in the current and
intermediate configurations. This partitioning is essential for the reductions to fol-
low.

At this point, two crucial assumptions are made regarding the functional depen-
dencies of certain constitutive quantities and the evolution of key variables. First,
the energies and Cauchy stress are assumed to be functions of the elastic deforma-
tion as measured from the intermediate configuration, the temperature, and the
internal variables but not in any way dependent on the plastic part of the deforma-
tion. This assumption follows from the idea that stress is the consequence of an
extended and distorted crystal lattice but not of dislocations (which are regarded
as a consequence of lattice instability) or other manifestations of plasticity per se.
Second, the evolution of variables is assumed to exhibit what may be called instan-
taneous thermoelastic response, and a physical argument is given to motivate the
assumption. A somewhat technical definition is required, but in essence it states that
acceleration waves are essentially elastic. These two assumptions are sufficient to
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ensure that the internal energy and Helmholz free energy are potential functions for
the second Piola—Kirchhoff stress and either temperature or entropy. The sig-
nificance here is that the potential relationships are proved to exist even when the
current stress lies outside the yield surface so that viscoplastic flow must be occur-
ring. The assumption of instantaneous thermoelastic response is the key to the
argument since that is what allows the jumps in the rates of elastic strain and tem-
perature to be arbitrary and independent, thus requiring their multiplicative factors
in the entropy inequality to vanish and in turn establishing the existence of the
potential relationships.

The derivatives of the potentials with respect to the internal variables define con-
jugate internal forces that do work against changes in internal variables. A residual
inequality immediately follows that states that the rate of working against the
internal variables, and hence the rate of storage of cold work, can be no greater than
the rate of plastic work. We also note that the usual inequality for heat conduction
may be extended to hold during plastic as well as purely elastic deformation,
although that does not follow as a consequence of the other assumptions, and we do
not make further use of that extension. Another consequence of the assumption of
instantaneous thermoelastic response is that density in the intermediate configura-
tion can be at most a function of the internal variables, but cannot depend on either
the elastic strain or the temperature.

The plastic stress power may be decomposed into contributions due to dislocation
slip and plastic volume change, since plastic incompressibility has not been imposed
a priori. Furthermore, if the intermediate density is chosen to be an internal variable
itself, it is found that an effective pressure does work against the changing inter-
mediate density. This effective pressure essentially consists of the difference between
the usual external pressure and the internal force conjugate to the intermediate
density. The existence of an effective pressure may have some bearing on the curious
fact that metals that display a stress differential effect (different yield stresses in
tension and compression) do not show the corresponding volumetric change that
might have been expected from the normality rule.

The Gibbs function may be used as a potential for elastic strain and entropy,
provided that the second Piola—Kirchhoff stress is invertible in elastic strain. Now
stress and temperature are regarded as the primary variables, which is useful since
stress rather than strain is often used as the primary mechanical variable in theories
of plasticity. Section 4 closes with a brief discussion of conjugate stress and strain
tensors. Potential relations hold for any elastic strain tensor and its conjugate stress
tensor, and the concept of conjugate plastic strain rate is introduced.

The yield function and equations that control the evolution of the internal vari-
ables and plastic flow are introduced in Section 5. Starting from a general form with
the evolutionary rates dependent on the plastic part of the deformation as well as the
mechanical, thermal, and internal variables, various restrictions are deduced or
imposed. Besides the usual invariance under rigid rotations, it is argued that the
evolutionary rates of the internal variables should not depend on the isochoric part
of the plastic deformation, although they may depend on the volumetric part since
the intermediate density may itself be an internal variable. The basic notion for this
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exclusion is that plastic slip is not an adequate measure of any aspect of the state of
the material even though it is the fundamental process that generates changes in the
internal variables. It is argued further that determination of the plastic flow rule,
which is one of the central problems for plasticity theory, actually consists of two
parts. First, there is the choice of the tensor measure of the rate of plastic deforma-
tion, several different forms of which have been advanced in the plasticity literature.
Second, there is the choice of the particular flow function. Once the preferred mea-
sure has been selected, we argue that the flow function should be independent of the
isochoric part of the plastic deformation. Finally, it is argued that the plastic stress
power due to dislocation slip should also be independent of the isochoric part of the
plastic deformation. This last assumption restricts the choices of the preferred mea-
sure of rate of plastic deformation.

Under some circumstances, it may be desirable to transform the internal variables
to another equivalent set. Whereas some authors have argued that such transfor-
mations should be allowed to depend on current values of temperature and elastic
strain or stress, we reject that possibility as being incompatible with the notion of
instantaneous thermoelastic response. All acceptable transformations to a new set of
internal variables, therefore, can depend only on the original set.

Section 5 closes with a discussion of the yield surface, which as usual is imagined
as enclosing a region (or possibly only a single point) in stress space within which
elastic, but not plastic, deformation can occur. Viscoplastic flow occurs only when the
current stress lies outside the yield surface, with the rate of plastic deformation
increasing with distance from the yield surface. In addition, we introduce the notion
of structural surfaces. These are similar to the yield surface in that they are also
imagined as surfaces in stress-temperature space, but each one encloses a region
within which the corresponding internal variable cannot evolve further from its
present state. These structural surfaces need not coincide with the yield surface,
although they may as a special case. The notion of independent structural surfaces
for the internal variables allows for the possibility of state changes that do not
depend on the occurrence of plastic deformation, but which may actually occur in its
absence. Examples of such a process might be static recovery and other relatively
low temperature thermal treatments. Recognition of such possibilities requires that
there can be no general relationship between increments of plastic strain and incre-
ments of internal variables, although there may be such a correlation in special
cases. This has implications for the fraction of the rate of plastic work converted to
heating.

The paper closes with Section 6, which contains a brief discussion of the comple-
tion of certain flow rules by the introduction of constitutive relations for plastic spin.

Although many of the results and viewpoints presented in this work are not new,
it is often difficult to attribute them to any specific individual. Some of the papers
with which we have significant points in common are Coleman and Gurtin (1967),
Kratochvil (1971), Mandel (1974), Teodosiu and Sidoroff (1976), Anand (1985), and
Cleja-Tigoiu and Sods (1990). The paper by Cleja-Tigoiu and Sods is particularly
recommended for its extensive list of references and its critical evaluation of much of
the early literature and some of the more recent literature. We share their viewpoint
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that many of the erroneous interpretations in the plasticity literature, particularly
those relating to the orientation of the intermediate (relaxed) configuration, are due
to the failure to lay down an adequate constitutive framework prior to the discus-
sion of such subtle issues. In this paper we propose a general framework for finite
viscoplasticity, and in follow-up papers we will compare several classes of flow rules
and examine the issues of invariance of the constitutive relations under rotations of
the intermediate configuration or changes in the initial configuration.

2. Physical basis

A typical single crystal or polycrystalline grain deforms elastically under suffi-
ciently small stresses or strains, but according to conventional views, the lattice
eventually becomes unstable and dislocations begin to form. This is the beginning of
plastic deformation by dislocation slip. As deformation continues, more dislocations
form and existing dislocations move through the lattice. The net result is to add a
certain amount of disorder or imperfection to the lattice. However, even at large
plastic strains most of the material remains crystalline. For example, suppose that in
a heavily deformed material there are O(10'2—10") dislocation lines cutting
through one square centimeter (Schaffer et al., 1995). This implies that the average
space between dislocations is O(3—10) nm or approximately 1040 atomic spacings
or lattice parameters. Clearly most of the material must retain its crystalline form,
and if it is true that stress arises from the distortion of the crystal lattice for elastic
deformations, then it must still be true in a plastically deformed or plastically
deforming solid. This observation is central to all further theoretical considerations.!

Since the presence of a dislocation distorts the lattice in nearby regions, elastic
energy must be stored in its neighborhood. In fact, as is well known, a continuum
representation of a dislocation results by considering a cut in the material, followed
by a translation of one side of the cut surface relative to the other, and then followed
by pasting the two sides of the surface back together again. Self-equilibrated stresses
will then be concentrated around the edge of the cut, and again it is clear that elastic
energy will be stored locally near the dislocation. Thus either the lattice or the con-
tinuum picture results in broadly similar conclusions. Point defects such as inter-
stitial atoms or vacancies will also cause a local distortion in the lattice and will have
a similar effect on the internal energy.

1 Although deformation twinning is also an important inelastic process in some materials, particularly
those with few active slip systems, we do not specifically address twinning in this work. In principle the
general evolution equations and flow rules considered in Section 5 could be applied to combined dis-
location slip and twinning by associating some of the internal variables with the twinning process, but it is
to be expected that a more realistic account of the relative effects of slip and twinning would result from
incorporating some aspects of the kinematics of twinning (in a continuum sense) in the theoretical
framework. In this regard the approach of Rajagopal and Srinivasa (1995, 1997, 1998a), based on the
concept of multiple natural configurations, seems promising; see also Lapczyk et al. (1998). Variations of
this concept have also been applied to phase transformations (Rajagopal and Srinivasa, 1998a, 1999).
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To pursue this idea a bit further, imagine a crystalline solid within which *“uniform
plastic deformation” is occurring, that is to say, within which a distribution of dis-
locations forms and changes as plastic deformation develops. Consider a repre-
sentative volume element R — a region small enough to be treated as a material
point in a continuum model, yet large enough to be statistically representative of the
local microstructure. According to our picture, there must be fluctuating stresses
and strains within R so that on a fine enough scale, there is nothing really uniform
about the deformation at all. However, suppose we decompose both the stress o and
clastic strain e into an average over R plus a fluctuation. Then an increment of
elastic work per unit current volume might be represented schematically as
W= ,l, Jr(6 4+ A0): 8(€ + Ag)dV, where an overbar denotes the mean value over
R (the reference and current configurations are taken to be identical here), and § and
A signify the increment and fluctuation, respectively. Since the average of the fluc-
tuation within R is zero by definition, the increment of work may be written

SW=6:6¢ +—:;J Ao : 8(Ae)dV. @.1)
R

The first term in (2.1) obviously represents the elastic work done by the average
stress and strain increment, and the second term represents the extra elastic work
done by the fluctuations. In the language of materials science, the first term may be
associated with “long range forces,” and the second term with “short range forces.”
To reiterate, the second term arises because of fluctuations in the elastic fields near
dislocations or other disruptions in the lattice such as point defects, second phases,
and grain boundaries. Alternatively, this term may be associated with the stored
energy of cold work.

The precise meanings of the various terms in (2.1) have deliberately been left
vague, but it seems clear that if plastic deformation occurs, some theoretical account
of the energetic consequences, not only of the average fields but also of fluctuations
around dislocations, should be given in any continuum model. In principle, it would
seem possible to consider a plastically deformed solid to be simply a thermoelastic
solid with special rules adjoined to allow for the formation and propagation of
individual dislocations. In practice, however, if approached deterministically such a
program is wildly unrealistic because of the vast numbers of dislocations that must
be accounted for, although the large numbers would seem to be an advantage for a
statistical approach. An alternate approach, and one that is in line with much other
work in modern continuum mechanics, is to represent a plastically deformed material
as being thermoelastic with respect to long range forces, as suggested above, and to
represent the altered internal state by a finite set of internal variables. It is intended
that these internal variables be associated conceptually with the fluctuations and
their effects on the average response. They are a reflection of the altered micro-
structure produced by plastic deformation, so they may also be referred to as struc-
tural parameters. Two examples of internal variables, or structural parameters, that
are commonly used in classical plasticity are a scalar work hardening parameter and

a tensorial back stress.
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Clarebrough et al. (1952, 1955, 1956, 1957, 1962) observed that plastic volume
changes and changes in the stored energy of cold work occur simultaneously in
several polycrystalline, fcc metals. Furthermore, Toupin and Rivlin (1960), using
only second-order, nonlinear elasticity, derived formulas that describe dimensional
changes in a crystal due to the presence of a dislocation, and Wright (1982) showed
that these formulas and data, when supplemented by higher-order, known, elastic
moduli, are fully consistent. Spitzig et al. (1975, 1976) measured permanent volume
increases after plastic deformation in several steels. They found similar increases for
tensile and compressive straining and also attributed the plastic volume change to
the generation of dislocations. If plastic volume change due to the creation or anni-
hilation of dislocations is to be taken into account, it should be regarded as a func-
tion of the internal variables characterizing the dislocation structure or as an
internal variable itself. Relatively large plastic volume changes may result from the
nucleation and growth of voids at sufficiently high tensile stresses. As is well-known,
these processes can also be modeled by an internal state variable approach (Davison
et al., 1977).

3. Multiplicative decomposition of the deformation gradient
3.1. The initial reference configuration?

Consider a crystalline body B, which initially occupies a stress-free configuration
By at uniform absolute temperature 6y. The stress-free condition refers to the mac-
roscopic stress in the continuum model. Microscopic residual stresses may exist, but
their mean value is assumed to be negligible over any representative volume element
in By. Let X denote a typical material point in this natural reference configuration,
and let x = x(X, ?) denote the position of X at time ¢>0. The deformation gradient
relative to By is F = 0x/0X and, since we assume that detF > 0, the deformation
gradient has the unique right and left polar decompositions

F =RU = VR. (3.1)
Here, U and V are symmetric positive-definite tensors, called the right and left

stretch tensors, respectively, and R is a rotation (i.e. a proper orthogonal tensor),
called the local rotation tensor. The finite strain tensor E is defined by

E= %(C -, C=FF=U? (3.2)

where I denotes the identity tensor and a superscript T denotes the transpose. The
second Piola-Kirchhoff stress tensor Ty relative to the initial configuration By is
defined in terms of the Cauchy stress tensor T by

2 The material in this subsection is standard; see Truesdell (1991), Ogden (1984), or Bowen 1989).
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To = (detF)F'TF T = (detU)U™! (RTTR)U", (3.3)

where a superscript —T denotes the inverse of the transpose.
If Q(?) is a time-dependent rotation, then the motion

x*(X, ) = Q()x(X, 1) (34

represents a rigid motion superposed on the motion x = x(X, #). Since the motion
x*(X, 1) has deformation gradient

ax*
T = 3.5
F = =QF (3.5)

relative to By, the uniqueness of the stretch and rotation tensors U*, V¥, and R* in
the polar decompositions of F* imply that R, U, and V transform as

R*=QR, U*=U, V*=QVQ’ (3.6)

under the superposed rigid motion. The middle relation expresses the fact that U is
invariant under superposed rigid motions. By (3.2) it follows that C and E are also
invariant. The Cauchy stress tensor transforms as

T* = QTQT. 3.7

This is regarded as a fundamental axiom of continuum mechanics, or it can Ige
derived from a corresponding axiom for the contact force. Then the invariance of Tp
and RTTR under superposed rigid motions follows from (3.7) and the other relations

above.
3.2. The local intermediate configuration

The total deformation in a plastically deforming solid is the result of thermoelastic
lattice distortion and dislocation slip, together with any inelastic volume changes
due to changing numbers of dislocations or to the nucleation and growth of voids.
This suggests the usual multiplicative decomposition of the deformation gradient
into an elastic part, F, and a plastic part, F,’

F =F.F,. (3.8)

F. and F, are assumed to have positive determinants, but unlike the total deforma-
tion gradient F, neither F. nor F, need be a gradient in itself. Nevertheless, it is

3 An alternative, reversed decomposition, F = F,F,, has been considered by Clifton (1972a), Nemat-
Nasser (1979), and most recently by Lubarda (1999).
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common to refer to F. and F, as the elastic and plastic deformation gradients,
respectively. Since there are infinitely many ways to express a given tensor F as the
product of two tensors, the elastic—plastic decomposition (3.8) is not a purely kine-
matical concept. For a given deformation history, the values of F. and F;, in (3.8)
must be determined by constitutive relations (see Sections 4 and 5). Nevertheless,
certain qualitative properties may be laid down at this point, guided by the physical
interpretation of these tensors.

The 1mage of a neighborhood of a point X in B, under the plastic deformation
gradient F,(X, 7) is often interpreted as a local, plastically deformed, intermediate
configuration at the reference temperature 6. Then Fc(X, ¢) is interpreted as a ther-
moelastic deformation of this intermediate configuration onto a neighborhood of
x(X, ©) in the current configuration at temperature 6(X, ). There are clearly some
limitations to this interpretation since plastic deformation, elastic deformation, and
temperature changes are generally occurring simultaneously. Nevertheless, this pic-
ture is conceptually useful and will be employed here.

Since, by assumption, the body occupies the reference configuration By at time
t =0, F =1 initially. And since F, represents plastic deformation relative to this
initial stress-free state, it is reasonable to assume that F, = I initially. Then by (3.8),
we must also have F. = I initially. Thus

F(X, 0) = Fo(X, 0) = Fo(X, 0) = 1, VX e Bo. (3.9)

It follows that the intermediate configuration initially coincides with the natural
configuration By.

The plastic deformation gradient can be decomposed into a dilatational
part, (detFp)]/ 3, representing any plastic volume change, and an isochoric part, Fp,
representing dislocation slip,

F, = (detF,)'*F,, detF, =1. | (3.10)

Let p, po, and pr denote the mass densities in the current, initial, and intermediate
configurations, respectively. Overall conservation of mass is expressed by

p detF = py. 3.1

Conservation of mass from the initial to the intermediate configuration and from the
intermediate to the final configuration can be expressed by

prdetF, = py and p detF. = pg. (3.12)

Since detF = detF.detF,,, these are completely consistent with (3.11). From (3.10)
and (3.12) we have
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1/3
F, = (ﬂ’-> Fo. (3.13)

It follows that pr = po and F, = I initially. The assumption of plastic incompress-
ibility, which is not invoked here, would be expressed by pr = o or, equivalently,
by F, = Fp.

By analogy with (3.3);, the second Piola—Kirchhoff stress tensor T relative to the
intermediate configuration is

— (detFo)F; ' TF;T = -pf ~TF; T, (3.14)

Since detF, > 0, the elastic deformation gradient has unique polar decompositions
F. =R.U, = V.R,, (3.15)

where R, is the local elastic rotation tensor, and the symmetric positive-deﬁnite
tensors U, and V, are the right and left elastic stretch tensors, respectively. By using
(3.15)1, we obtain an alternate expression for T analogous to the expression (3.3),

for Ty,
T = (detU)U; ' (RITR,)U; . (3.16)

The local elastic rotation R, maps the principal axes of R:fTRe to those of T; these
two stress tensors have the same principal values, namely the principal Cauchy

stresses.
For the superposed rigid motion x* = Qx, we have FF} = F* = QF = QFF;.
Thus, the transformation rules for F, and F, must be cons1stent with the condition

FF = QF.F,. (3.17)

The assumption made here is the simplest one consistent with (3.17), namely, that
under a superposed rigid motion, F. and F; transform as

F; = QF, and F; =F;. (3.18)
In view of (3.17), either one of these rules implies the other. Note that F, transforms

like the total deformation gradient F. The invariance of F, is equivalent to the
invariance of pr and Fp; therefore,

oi=pr, F=F, (3.19)
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This is consistent with the view that a superposed rigid motion does not produce
plastic volume change or dislocation slip. Additional motivation for the invariance

of F,, is provided in Section 3.4
The elastic finite strain tensor E. is defined by

E. = %((:e ~I), C.=FIF. =12, (3.20)

which is analogous to the definition (3.2) of E. From (3.18); and the uniqueness of
the stretch and rotation tensors in the polar decompostions of F. and F.*, we find
that R,, Ue, and V. transform as

R:=QR,, U!'=U, V:=QV.Q' (3.21)

under a superposed rigid motion. In addition to U,, the tensors C., E, T, and
RITR, are also invariant under a superposed rigid motion. These transformation
rules for tensors defined relative to the intermediate configuration are analogous to
the transformation rules in Section 3.1 for tensors defined relative to the initial
configuration.

3.3. The small elastic shear strain approximation
From (3.12), and the polar decomposition of F,, we have
PR :
detF, = detU, = detV, = e ‘ (3.22)

The elastic deformation gradient F, may be decomposed into a dilatational part,
(detFe)l/ 3 and an isochoric part, Fe,

1/3
F. = (detF.)!*F, = ("7“) Fe, detFe=1. (3.23)

Similarly, the elastic stretch tensors may be decomposed into dilatational and
isochoric parts,

. 1/3 1/3
Ue=(£p'i) Us, ve=("_;:) Ve, detUp = detVe = 1. (3.24)

4 Some authors adopt the transformation rules F; = QF.QT and F; = QF,. Indeed, these would seem
to be the only other simple rules consistent with (3.17). However, the rule F; = QF, is inconsistent with
the property of instantaneous elastic response introduced in Section 4.4.This transformation rule also has
the undesirable property that a rigid motion superposed on the initial undeformed state (where F, =1)
results in Fj = Q. We do not consider a pure rotation to be a plastic deformation in the sense of crystal-
lographic slip.
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Then Fe has the polar decomposition

E, = R.U, = VR, (3.25)
and
0 2/3
Ce = (_/TR) Ce, Ce=FFe=U., detCo=1 (3.26)

The symmetric positive-definite tensors U, and Ve and their eigenvalues as, 75, 15
are independent of the dilatational and rotational parts of F, and thus are measures
of elastic distortion only. It follows that U, — I and V, — I can be regarded as tensor
measures of elastic shear strain and that

3

1/2
" Ue - I” = "Ve - I" = [Z(ES - 1)2] (327)

i=l

measures the magnitude of the elastic shear strain, independent of the elastic volu-

metric strain and the elastic rotation.
Plastic flow limits the elastic shear strains that a material can support, and for

metals ||Ue — I|| is small compared to unity. Then [[Ug — Ij? is small compared to
lUe —IJ|, and so on. By a “small elastic shear strain approximation” we mean any
approximation obtained by neglecting these relatively small terms. For example,
since U = I+ (Us — I) and since we may neglect the term U, —I relative to I for
small elastic shear strains, on using (3.24); we obtain the approximations

0 1/3
U.H ~ HU, ~ (—;3—) H (3.28)

for any tensor H. Since |JU;' — I and ||C, — I|| are small compared to unity when
lUe — I} is small compared to unity, we also have

or\ 1 o\ 2
U'H~HU;' ~ (-;R) H and C.H ~ HC, ~ (—;-) H (3.29)
for any tensor H. From (3.29);, (3.22), and the exact expression (3.16) for T, we
have
. 1/3
T~ (%‘.) RITR, (3.30)

in the small elastic shear strain approximation. Similarly, (3.28), (3.24);, and the
polar decomposition F. = R. U, yield
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2/3
FTHF, ~ (i’pi) RTHR, (3.31)

for any tensor H.

Although the small elastic shear strain approximation is sufficiently accurate for
some problems in metal plasticity, there are circumstances where higher order terms
need to be retained.® For this reason we develop the general theory for finite elastic
strains and then occasionally point out the simplifications that result for small elas-
tic shear strains.

4. Thermodynamic restrictions

4.1. Balance laws and the entropy inequality®

The local form of balance of linear momentum in the current configuration is

divT + pb = pv, @4.1)

where b is the body force per unit mass, v is the particle velocity, and a superposed
dot denotes the material time derivative. After balance of mass and momentum are
taken into account, the local form of balance of energy in the current configuration
reduces to

+r, 4.2)

where e is the internal energy per unit mass, q is the heat flux vector, and r is the rate
of supply of energy per unit mass from the exterior of the body. The stress power per
unit mass, P, is given by

_T:L_T:D To:E
P p po

P 4.3)

Here L is the spatial velocity gradient and the stretching tensor D is the symmetric
part of L,

W=L=FF , D= symL = %(L +LT). 4.4)

5 For example, see Clifton (1972b) and Herrmann (1976) for discussions of nonlinear elastic effects on

the decay of the elastic precursor in elastic—plastic waves generated by plate impact.
¢ The results in this subsection are standard; see Truesdell (1984) or Bowen (1989).
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The last expression in (4.3) follows from (3.3),, (3.11), and the first of the relations

1. 1

E = FTDF = sym (FTF) =-C=3 (UU + I‘JU). 4.5)

Conservation of mass in the current configuration is expressed by

= tr(FF“‘) = trL = trD. (4.6)

In continuum mechanics, the second law of thermodynamics is often expressed by
the Clausius-Duhem inequality, hereafter simply referred to as the entropy
inequality. The local form of this inequality in the current configuration is

N> - -:;div(%) +5, @4.7)

where n is the entropy per unit mass. The internal dissipation per unit mass, 4, 1s
defined as the amount by which 67 exceeds the local heating:

5 =60 — (— d’; 1, r). (4.8)

By expanding the divergence term in (4.7) and using (4.8), the entropy inequality
may be written as

§— 9-%9 >0. 4.9)

In view of (4.8), the energy balance Eq. (4.2) is equivalent to
§=P+67—eé. (4.10)

Alternatively, one may define the internal dissipation by (4.10). Then (4.8)
expresses the balance of energy, which is usually written as

g
on =8 — 1;q+r. , 4.11)

If ¢ denotes the Helmholz free energy per unit mass,
¥ =e—0n, (4.12)

then the internal dissipation may be expressed as
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§=P— (g?/—\—né). @413

4.2. Elastic—plastic decomposition of the stress power
By taking the material time derivative of the multiplicative decompostion F =

F.F, and using (4.4) and (3.20), we obtain additive decompositions of the velocity
gradient and the stretching tensor into elastic and plastic parts:

L=L 4L, L=FF! L,= Fe(FpF;I)F;I, (4.14)
D=D.+D, D,=symL, =FEF;', D,=symL, (4.15)

Note that just as (4.6) expresses conservation of mass in the current configuration,
the above relations and (3.12); imply

PR _ (detFp) . (e o1} _ _ |
i ke tr(Fpr ) — trL, = trDy, (4.16)

which is an expression of conservation of mass in the intermediate configuration.

From (4.14), (4.15), and (4.3), we see that the multiplicative decomposition of the
deformation gradient leads to an additive decomposition of the total stress power
(per unit mass) into elastic and plastic parts,

PzPe+Pp» (417)

with
pP.=T:L,=T:D,, pPpy =T :L, =T : Dy, (4.18)

On using (4.10), (4.13), and the elastic-plastic decomposition of the stress power, the
internal dissipation 8 may be expressed as

§="Pp— W, (4.19)
where
Wy = ¥+ 1 — Pe = é — 0 — Pe. » (4.20)

Given the constitutive assumptions introduced in Sections 4.3—4.4, it will be shown
in Section 4.6 that W, may be associated with the rate of change of the stored energy
of cold work. In view of (4.19), the entropy inequality (4.9) may be written as
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. Y
Pp "‘Ws —""l"“"—‘>0. (4‘21)

Alternate tensor measures of total, elastic, and plastic strain rate are obtained by
transforming the tensors in (4.14)—(4.15) back to the intermediate configuration:

FILF.=L=L.+L,, (4.22)
where

L. = FTL.F, = F'F,, (4.23)

L, = FIL,F, = C.F,F;; (4.24)
and

symL = FDF, = D = E. + D,, (4.25)
where

E. = FTD.F, = symL,, (4.26)

Dy, = FTD,F. = symL, = sym(CFpF; ). (4.27)

From (4.25) it follows that Ee and ﬁp can be regarded as the elastic and plastic
parts of the total strain rate D. Note that D can also be obtained by transforming
the total strain rate E from the initial configuration to the intermediate configuration,

- I
D =F,"EF, . (4.28)

The tensors L, ﬁe, ip, f), E., and ﬁp are invariant under superposed rigid motions.

From (3.14), (4.17) and (4.18), and the relations above, we obtain alternate
expressions for the total, the elastic, and the plastic stress power (per unit mass) in
terms of quantities in the intermediate configuration:

prP=T:L=T:D, (4.29)

prPe=T:Le=T:E.,, prP,=T:L,=T:D,. (4.30)

In view of (4.30), the stress tensor T is said to be (work) conjugate to the elastic
strain tensor E, and the plastic strain rate tensor D,. This concept is generalized to
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other stress and strain measures in Section 4.10.The plastic strain rate tensor D;, has
been emphasized by several authors; see Miehe (1994), Maugin (1994), Cleja-Tigoiu
and Maugin (2000), and the references therein. Decomposition of the plastic stress
power and the plastic strain rates D and D, into dilatational and shearing parts is
discussed in Section 4.8. From (4. 30) and the expression (4.24) for Lp, the plastic
stress power may also be expressed as

prPp = C.T : F,F,'. (4.31)

In view of this result, some authors work with the stress tensor Ce’f‘ =
(or/P)FXTF. T, which is generally not symmetric (Teodosiu and Sidoroff, 1976;
Cleja-Tigoiu and Maugin, 2000).

For small elastic shear strains, (3.31) and (3.29), yield approximations for the
rates in (4.22)—(4.27). For example,

or\ 3 _ :
(-—}) L, ~ RIL,R. ~ F,F;' (4.32)
and
P -2/3
(To&) D, ~ RTD,R.. (4.33)

Note that, while (4.27) and (3.29), might suggest the approximation f)p ~
sym(FpF; 1), this approximation is not valid without some restrictions on the
relative magnitude of skw(FpF; 1) and sym(FpF; ‘). This point is discussed in more
detail in a follow-up paper (Scheidler and Wright, 2001).

4.3. Thermoelastic constitutive assumptions

To reflect the ideas expressed in Section 2, we assume that the internal energy e,
the free energy v, and the Cauchy stress T depend only on the current values of the
elastic part of the deformation gradient, the absolute temperature, and the internal

variables. Let ¢;,...,qy and Ay, ..., Ag denote the scalar and tensor internal vari-
ables, respectively. Then

1#:12‘(Fe,03q17"'qu,Al"“sAK)a (4.34)
e = é(Fe,O, dis-.- 4N, Al, ‘e ,AK), (435)

T=%(Fe,9,ql,...,qN,A1,...,AK), (436)
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for some smooth’ functions ¥, é, and . Definitions (4.12) and (3.14) imply that 5
and T also exhibit the same functional dependencies.

Although the general framework developed in this paper is not restricted to tensor
internal variables of second order, for simplicity we regard the A, as second-order
tensors since specific examples of higher-order tensors are not discussed. We do not
require that the Ay be symmetric. The list of internal variables is assumed to be
functionally independent in the sense that no internal variable can be expressed as a
function of the others. Depending on the context, we use ¢, and Ay, to denote either
typical scalar and tensor internal variables or the lists of these variables. For exam-
ple, the constitutive relation (4.34) is abbreviated as ¢ = V(Fe. 6, gn, Ax).

Observe that, while F, is measured relative to a changing intermediate configura-
tion, the response functions in (4.34)(4.36) are fixed. For a single crystal this
assumptlon is justified if F,, evolves in such a way that the orientation of the crystal
lattice in the intermediate conﬁguratmn coincides with the lattice orientation in the
initial configuration. Then the thermoelastic response relative to the intermediate
configuration should coincide, at least approximately, with the initial thermoelastic
response, any differences being due to the altered microstructure as expressed by
changes in the internal variables. Following Mandel (1974), such an intermediate
configuration is often referred to as isoclinic. Since an isoclinic intermediate config-
uration is clearly invariant under a superposed rigid motion, so is the plastic defor-
mation gradient F,, that defines it (Kratochvil, 1971). Thus the assumed invariance
of F, in Section 3. 2 is consistent with the above interpretation. For a polycrystal, F,
and F represent average elastic and plastic deformations over the individual grains
in a representatlve volume element. Since these grains may rotate relative to one
another, the concept of an isoclinic intermediate configuration does not extend from
single crystals to polycrystals. Nevertheless, the existence of an invariant inter-
mediate configuration relative to which the thermoelastic response can be approxi-
mated by relations of the general form (4.34)(4.36) does not seem unreasonable.
For a randomly oriented polycrystal, the lack of unigueness of an intermediate con-
figuration with these properties has led to much debate and some confusion in the
literature.

The dependence of the stress on some or all of the internal variables may be neg-
ligible for certain problems. For example, even large changes in a scalar work
hardening parameter would be expected to have at most a small influence on the
elastic response. However, the effects of evolving microstructure on the stress cannot
always be neglected. Two cases come to mind immediately. First, for sufficiently
large deformations of initially isotropic polycrystals, the development of texture due
to reorientation of the crystal lattices of grains can result in significant anisotropy in
both the incremental plastic and elastic responses. Second, when void growth
occurs, the effective elastic moduli decrease with increasing void volume fraction.

7 Henceforth, all constitutive functions are assumed to be smooth unless stated otherwise. If the body is
inhomogeneous then (4.34)—(4.36) should include an explicit dependence on X. Although we allow for this
possibility, the argument X is suppressed for simplicity.

R R R R R
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Since the initial configuration is unstressed, (4.36) and (3.9) imply .that
2(1, 00, %, A2) = 0, where ¢} and A§, are the initial values of the internal variables. If
the current configuration coincides with the intermediate configuration, so that
F. =1, and if 0 = 6y, then T = T(1, 6, g, Ax). It follows that the intermediate con-
figuration is necessarily stress-free if the internal variables have not changed from
their initial values or if the dependence of the stress on the internal variables can be
neglected. We will assume that

(L, 00, gn, Ai) = 0 4.37)

for all possible values of the internal variables, which implies that the intermediate
configuration is always a stress-free state.® For this reason it is often referred to as a
relaxed configuration. This assumption is conventional and seems to be consistent
with the physical interpretations discussed above. However, it does not imply that
the intermediate configuration at time ¢ can necessarily be attained by unloading
from the current configuration at time ¢, since the process of unloading may result in
further plastic deformation and hence in a new intermediate configuration.

The scalar internal variables, like all true scalar fields, are assumed to be invariant
under superposed rigid motions. The transformation properties of the tensor inter-
nal variables depend on their physical interpretation. For example, if we regarded
A; as a Cauchy-type back stress, then it should transform like the Cauchy stress
tensor. Instead, we assume that the tensor internal variables Ay, like T and E., are
invariant under superposed rigid motions. Thus

g = qn, Ay = A, (4.38)

and the tensors A; may be thought of as residing in the intermediate configuration.
At this stage, the assumption A} = Ay is not really a constitutive restriction since

for each of the tensor internal variables A, we may define a corresponding tensor

internal variable B, that does transform like the Cauchy stress tensor, that is,

B; = QB,Q” (4.39)
under a superposed rigid motion x* = Qx. For example, each of the choices

B, = RART, FAFT, or F;TAF;! (4.40)

8 This assumption is used only occasionally in the rest of the paper, so it could be weakened or even
dropped. In particular, the derivations of the thermodynamic restrictions in Sections 4.54.7 make no use
of (4.37). For some materials and processes it may be more reasonable to assume that (L, OR, gn, Ax) =0
for some temperature 6g = 6r(gy, Ax). Then the intermediate configuration may still be interpreted as
stress-free provided that the temperature in the intermediate configuration is taken to be 6 instead of 6p.
For example, in an ostensibly isotropic polycrystalline material with less than cubic symmetry in the
fundamental crystals, either pressure or thermal cycling may cause plastic deformation at crystal bound-
aries to maintain continuity. Such changes must be manifested in the internal variables and could require
a change of reference temperature in the manner suggested.
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satisfies this condition. On solving (4.40) for Ay, we obtain

Ai = RIBiR.,F,'B,F.7, or FTB,F.. (4.41)

On substituting (4.41) into the constitutive relation ¢ = V(Fs, 6, gu, Ax), We obtain a
relation of the form

¥ = U(F.,6, ¢, Br) . (4.42)

for some function ¥, which depends on the particular relations between the A; and
the By. Conversely, if ¥ is assumed to satisfy a constitutive relation of the form
(4.42) and the tensor internal variables By, transforms as in (4.39), then (4.41) defines
corresponding tensor internal variables A, that are invariant under superposed rigid
motions; and on solving (4.41) for By, we obtain (4.40), which yields a constitutive
relation of the form ¥ = V(Fe, 6, g», Ar) when substituted into (4.42). Note that for
the relations above or for variations such as Ay = (detF¢)F_ lBkFe‘ T the tensor Ay is
symmetric iff B, is symmetric. Also note that in the small elastic shear strain
approximation, the second and third choices in (4.40) differ from ReAkRg by the

factors (pr/p)*/* and (pr/p)~3, respectively.
Since ¥, 6, g, and Ay are invariant under a superposed rigid motion x* = Qx,
whereas F; = QF,, it follows that
¥ = Y(Fe, 6, gn, Ar) = Y(QFe, 0, g, A) = ¥(Ue, 6, g, Ar) (4.43)

for every rotation Q, where the last relation follows from the polar decomposition
F. = R.U, by taking Q = R. Since

Ue = vI+2E., (4.44)

(4.43) is equivalent to the reduced form

¥ = Y(Ee, 0, gn, Ay) (4.45)

for some smooth function ¥. Results analogous to (4.43) and (4.45) hold for e, n,
and T, since these variables are also invariant under superposed rigid motions. Thus

e = &(E., 0, gn, Ar), (4.46)

n = f(Ee, 6, gn, As), (4.47)

T = T(Ee, 6, g, Ar), (4.48)
and (4.37) implies that
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%(0, 90, qn.Ak) =0. (449)

Constitutive relations such as the reduced forms (4.45)-(4.48), for which the depen-
dent variables transform properly under superposed rigid motions, are said to be
properly invariant or objective.® By (3.14),

T = (detF,)"'F.TF, = ;)p—Fe'f‘F:. © (4.50)
R

Then (4.50) with T given by (4.48) is a properly invariant constitutive relation for
the Cauchy stress. Properly invariant constitutive relations in terms of tensor inter-
nal variables By, that transform like the Cauchy stress are given by (4.45)—(4.48) with
A, replaced by any of the expressions in (4.41).

From Eq. (4.45), the material time derivative of the free energy is given by

Wk +3¢0+Z ,,+Z— Ay 4.51)

1pE)E 00

Then from (4.20), and the expression (4.30) for the elastic part of the stress power,

T N
Ws=(3"’ T) Ee+(w+n)é+2-a£qn+zi‘f— Ar. (4.52)

dE. pr a0 0A

On using the above expression for W, the entropy inequality (4.21) becomes

dv T\ . [0 \, Now., Koy .\ qVe
(a—Ee—;-R")Ee‘l'(‘é’é‘l‘n)GS(’Pp—E -é—é;qn-— E 5-A—k-.Ak)—-——.
(4.53)

The next step is to determine the restnctlons imposed by the entropy inequality
(4.53) on the constitutive functions ¥, &, T, and 7 in (4.45)~(4.48). These restrictions
depend on evolution properties of the mternal state variables and the plastic defor-
mation gradient that have yet to be specified. The property of instantaneous ther-
moelastic response, which is introduced in the next subsection, implies that the
expressions in parentheses on the left-hand side of the entropy inequality (4.53) must
be zero. Consequently, we obtain the classical thermoelastic potentials as well as a
plastic dissipation inequality and a restriction on the plastic volume change.

9 If x* = Qx is interpreted as a change of frame (or observer), and if the transformation rules for the
field variables are interpreted accordingly, then identical results follow from the axiom that constitutive
relations be independent of the frame of reference, in which case the reduced forms (4.45)(4.48) are
referred to as frame-indifferent; see Truesdell (1991) or Ogden (1984).
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The use of the Clausius—Duhem inequality to obtain thermodynamic restrictions
on constitutive relations goes back to Coleman and Noll’s (1963) paper on thermo-
elastic materials with viscosity and has since been extended to other classes of
materials by numerous authors. Of particular relevance are the papers by Wang and
Bowen (1966) on quasi-elastic materials and Coleman and Gurtin (1967) on mate-
rials with internal state variables. These authors did not consider plasticity per se,
but they did consider inelastic materials with properties similar to what we term
instantaneous thermoelastic response. Mandel (1974) exploits a similar concept in
his paper on “Thermodynamics and Plasticity,” although his definition, which is a
bit vague, is different than ours, and most details are omitted. Indeed, in papers on
viscoplasticity, the derivation of the potential relations and the plastic dissipation
inequality from the entropy inequality (4.53) is typically omitted, although the
papers by Coleman and Gurtin (1967) and Green and Naghdi (1965) are often cited
for details. As mentioned above, the former paper does not discuss plasticity per se.
The analysis in the latter paper, while completely rigorous given the assumptions
made there, is not applicable to the viscoplasticity theory considered here since it is
based on the assumption that during plastic deformation the stress and temperature
always lie on an evolving yield surface, inside of which the response is purely ther-
moelastic.!?

In view of the above remarks and also because the property of instantaneous
thermoelastic response involves assumptions that are weaker than those typically
considered in papers on viscoplasticity,!! our constitutive assumptions and their
consequences are discussed at length in the next subsection, and detailed derivations
of the thermodynamic restrictions are presented in Sections 4.5-4.7.

4.4. Instantaneous thermoelastic response

Several physical observations would seem to lead to a constitutive requirement of
the sort that we term instantaneous thermoelastic response. First, infinitesimal
ultrasonic waves have been observed to travel with their usual elastic wave speeds
through regions that have previously been plastically deformed and that are being
held in a state of incipient plastic deformation. Second, Bell and Stein (1962) con-
firmed earlier observations by Bell and others that the initial part of an incremental
loading wave in a plastically prestressed bar also travels at the elastic speed. Similar
results have been observed for reloading waves in normal plate impact tests (Herr-
mann, 1976). Third, so-called strain rate jump tests in a Hopkinson bar show an
initially elastic transient as the flow stress switches continuously from one constant

10 For similar reasons the approach used by Casey (1998), which does not assume the existence of
entropy as a primitive field but instead shows how an entropy function can be constructed, cannot be

applied to the materials considered here.

11 Under stronger assumptions of the type introduced in Section S, the thermodynamic restrictions
derived in Sections 4.5, 4.6, and 4.9 have been noted by numerous authors; for example, see Kratochvil
(1971), Teodosiu and Sidoroff (1976), Davison et al. (1977), Anand (1985), and Cleja-Tigoiu and Maugin

-(2000). _
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strain rate to another; see Duffy (1980) for a summary of a large amount of data,

and also Brown et al. (1989).

The precise definition of instantaneous thermoelastic response is as follows. Con-
sider a fixed material point X; for simplicity the argument X is suppressed below.
For given initial values of g, and Ay (recall that F, =1 initially), we assume that
gx(1), Ax(f), and Fp(¢) depend only on the history of F and 6 on the time interval
[0, 7]. In particular, g,, A;, and F,, are independent of the current and past values of

the temperature gradient, and hence so are their rates g,, Ak, and F In addition, we
assume that if the process (F(?), 6(¢)), t>0, is a piecewise contlnuous function of
time, then gy, Ax, and F;, and their rates ¢, A, and F are continuous at any instant
at which F and 6 are contmuous In particular, the contmulty of gn, Ak, Fp, and their
rates at the present time is unaffected by past jump discontinuities in F or 6, as
would occur from the passage of shock waves through the point X, and is also
unaffected by past or present jump discontinuities in F and 8, as would occur from
the passage of an acceleration wave. A material that satisfies the above restrictions
and also the constitutive assumptions (4.34)—(4.36) for ¥, e, and T will be called a
material with instantaneous thermoelastic response.

Observe that in the above definition we have made no assumptions about the
continuity of g, Ak, Fp, and their rates at an instant when F and 6 suffer jump dis-
continuities. Also note that the continuity assumptions on F could not be satisfied
if F, were not invariant under superposed rigid motions. Suppose for example, that
Fp transformed as Fj = QF, under the superposed rigid motion x* = Qx, and con-
sider the case where F 6, and Q are continuous, but Q is discontinuous. Then F* =
QF and 6* = 6 are continuous, and so are F, and F, for a material with instantaneous
thermoelastic response, but ( ) = QFp + QFp is discontinuous due to the dis-
continuity in Q. Thus the contmuous process (F*,6*) would result in a plastic
deformation gradient whose rate, (F*) is discontinuous, contrary to the definition
of instantaneous thermoelastic response. Similarly, the continuity assumptions on
A, would not be appropriate if these tensors were not invariant under superposed
rigid motions; this point is discussed further Section 5.2.

As demonstrated at the end of this subsection, an example of a material with
instantaneous thermoelastic response is one which satisfies the thermoelastic con-
stitutive relations in Section 4.3 and evolution equations of the form

F, = H(Fe, 0, gn, At Fy), (4.54)
Gm = &Em(Fe, 0, qn, A, Fp), (4.55)
A; = A(Fe, 0, gn, Ar, Fp), (4.56)

formmn=1,...,Nandjk=1,..., K, provided the response functions H, &,, and
Aj; are “suﬁimently nice.” The materlals considered in Section 5 are special cases of
th1s class of materials. Observe that if the list of arguments on the right-hand side of
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(4.54), (4.55), or (4.56) included 6 or some measure of the total rate of deformation,
such as F, E, L, D, or D, then the material would not have instantaneous thermo-
elastic response, since a discontinuity in these rates would result in a discontinuity in
dn; A, or F,,, even if F and 6 are continuous. Also note that unlike the constitutive
relations (4.34)—(4.36) for ¥, e, and T, the plastic deformation gradient F, is inclu-
ded in the list of arguments for the evolution Eqgs. (4.54)—(4.56). Elimination of F,
from the right-hand side of (4.54) would be overly restrictive (see Section 5.1). On
the other hand, some authors argue that F, (or more precisely, Fp) should be absent
from the evolution equations for the internal variables, while others argue for its
inclusion, often in the form of a plastic strain tensor. We will eventually adopt the
former viewpoint, but in this section we allow an arbltrary dependence on F, in
(4.54)(4.56), if only to demonstrate that such dependence is not inconsistent w1th
the property of instantaneous thermoelastic response and that it has no effect on the
- thermodynamic restrictions derived in Sections 4.5-4.7.

The qualitative properties that characterize a material with instantaneous ther-
moelastic response suffice for the derivation of the thermodynamic potentials and
the plastic dissipation inequality from the entropy inequality (4.53). Indeed, the
derivation of those results is not simplified in any way by restriction to the special
class of materials satisfying (4.54)—(4.56). For this reason we postpone specialization

to these evolution equations until Section 5.

Consider a material with instantaneous thermoelastic response undergoing a pie-
cewise continuous process (F(#), 8(?)) for times ¢ € [0, #; + Af), with F and 6 con-
tinuous at time #,. Then g,, Ay, F, and gy, Ag, Fp are continuous at time #;, by
assumption. By (3. 12) (3.13) and (4 16), pr, PR, Fp, and F are also continuous at
t1. Since Fe = FF‘ F. is continuous at ¢ = #;, and hence so are Re, Ve, Ue, Ce, and
E.. From (4. 45H4 48), ¥, e, n, and T are continuous at ¢;, as are their partial deriva-
tives with respect to E., 6, g, and A;. By (4.36), the Cauchy stress tensor T is also
continuous at #,. From (4.14), (4.15), (4.18), (4.24), and (4.27), the plastic rates Ly,
D,, Ly, and D, and the plastic part P, of the stress power are continuous at time #;.
Observe that these properties hold regardless of any jump discontinuities in F and 6
at times ¢ < t; and regardless of possible discontinuities in F and 6 at times t<#;. If
F is also continuous at time #;, then from F, = FFpl and the continuity of F, and Fp
at t; it follows that K, is continuous at #;, and hence so are the elastic rates R., V.,
U., Ce, E., L., D, and L., as well as the elastic and total stress power Pe and P.
Similarly, these variables are continuous from above (or below) at time #; if F is
continuous from above (or below) at #;. If F and 6 suffer jump discontinuities at
time #;, then [F] = [¥.JF;, and by (4.51), [¥] = (3¥/3E) : [E.] + (3y/30)[0],with
analogous jump relations for é, 5, and T. Thus the instantaneous response to jumps
in the temperature rate and total deformation rate is thermoelastic.

It should be clear from the above discussion that once appropriate constitutive
relations are provided for g,, Ax, and Fy,, the theory is complete in the sense that the
values of these variables, as well as the values of pr, Fe, ¥, e, 5, T, and T, are
determined at any time ¢ by the history of F and 6 up to time ¢ and the initial values

of the internal variables. Note that we have placed no restrictions on the heat flux q.
Of course, a constitutive relation for the heat flux would have to be specified if the
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energy equation is to be solved for the temperature distribution, but such problems
are not considered in this paper.

In the remainder of this subsection, we demonstrate that a material satisfying the
thermoelastic constitutive relations in Section 4.3 and the evolution Eqgs. (4.54)-
(4.56) has the property of instantaneous thermoelastic response, provided the con-
stitutive functions H, &,, and A; in these evolution equations are Lipschitz con-
tinuous on any compact subset of their domain. Typically they would also be
piecewise smooth.!? Since F, = FF, 1 Eqgs. (4.54)—(4.56) are equivalent to the evo-
lution equations

F, = H*(F, 6, g, A, Fp), (4.57)
= £4(F, 0, gu, Ar, Fp), (4.58)
A; = A¥(F., 0, n AL, Fyp), (4.59)

where ’H#(F o, q,,,Ak, ) ’H(FF 16, gn, Ai, Fp ) for example, and the functions
H*, &, and A are also Lipschitz continuous on any compact subset of their
domain.

For a fixed material point and a given piecewise continuous process (F(#), 6(¢)) for
t>0, the equivalent system (4.57)—(4.59) is a first-order system of ordinary differ-
ential equations for the dependent variables Fp, g,, and Ay, say

Fo(t) = H'(t, gu(), Ak(?), Fo(9)), (4.60)
gm() = EL(t, gu(D), Ar(D), Fp(0)), (4.61)
Aj(0) = A}(t, g(0), Ac(0), Fy(1)). (4.62)

The functions H?, EE,,, and _qu depend on the functions H*, ‘g‘ﬁ,, and Af and also on
the particular process (F, 6), for example,

H(2, Gn, Ar, Fp) = H*(F (1), 60), 4, A, Fp). (4.63)

HH, g, and .Ah are at least piecewise continuous with possible jump discontinuities
across the planes t=tin (t qn, A, F ) -space, where ¢ is any one of the discrete

12 Requiring these functions to be continuously differentiable at all points would be too restrictive an
assumption in general. For materials with an explicit yield surface (see Section 5.3), H is 0 inside the yield
surface and would typically be smooth outside the yield surface, but its partial derivatives could suffer
jump discontinuities at the yield surface.
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instants at which F or 6 suffer jump discontinuities. Furthermore, on any compact
subset of their domain in (t, g, A, Fp)-space, the functions H", £!,, and A" satisfy a
Lipschitz condition in the dependent variables g,, A, and Fp. For example,

[72:6. . e ) =76 (130 B )|
= [##(F@), 0. 4, Ak, Fy) = 1* (D), 600), s Ar B )|

N X -
ST SAN I
n=1 =]

for some constants M,,, My, and M (independent of #), by the Lipschitz continuity of
the function M.

For given initial values of the internal variables (recall that F, = I initially), these
properties suffice for the existence of a unique solution g,, A, Fp, of (4.60)-(4.62)
that is continuous and piecewise smooth.!* The only possible discontinuities in Fp,
qn, OT Ay are the jump discontinuities that can occur at an instant t at which F or 6
suffer a jump discontinuity, in which case (4.54)(4.56) hold for the one-sided deri-
vatives of Fp, gy, and A;. Clearly, the conditions of instantaneous thermoelastic
response are satisfied. In addition, Fp, g,, and A, are continuous across a shock,
whereas their rates suffer at most jump discontinuities across a shock. Note that
these shock properties are derived results for this particular class of materials —
they were not assumed in the definition of instantaneous thermoelastic response and
do not follow from it without additional assumptions.

4.5. The thermoelastic potentials

Henceforth, we assume the material has instantaneous thermoelastic response.
For a fixed material point X, consider a piecewise continuous process (F(?), 6(?)) for
t € [0, t;], with F and 6 continuous (from below) at time ¢;. Choose any tensor G and
scalar ®, and extend the process (F(¢),6(f)) to the time interval (¢, #; + At) by
defining

F()=F()+ (@ — )G, 6(0) =6(t) + (t — 11)O, t € (11, 1) + A¥), (4.64)

where the time increment Atz > 0 is sufficiently small so that detF(s) and 6(¢) are
positive. Then the extended process is continuous at each time ¢ € [¢y, #;, +Af) and is
piecewise continuous on the time interval [0, #; + Af). Hence, by the property of

13 The above assumptions suffice for the existence and uniqueness proof by the method of successive
approximation (Ince, 1956, Section 3.21), which is usually stated with the stronger assumption of con-
tinuity of H', £, and .A]’? (along with the Lipschitz condition in the dependent variables).

e
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instantaneous thermoelastic response, the terms in parentheses in the entropy
inequality (4.53) are continuous at each time ¢ € [t, #; + Af) and, by (4.64), F and 6
are continuous on the open interval (¢;, ; + Atf) with limits from above at #;, namely
F(f) = G and 6(¢}) = ©. Since these properties are independent of the history of
the temperature gradient at X, they certainly hold if the process is homothermal at
X, that is, if VO(X, #) = 0 for all ¢ € [0, #; + Af).!* For a homothermal process the
term involving the heat flux drops out of the entropy inequality (4.53)."> On evalu-
ating this inequality at ¢ € (1, t; + Af) and taking the limit as 1 — t; from above,
we obtain

a3 T v X o .
(aE p)(zl) Ee(rf) + (89+n)(t1)@<(7’p Zaqn ;@—:Ak)(m.

R
(4.65)

Since each of the terms in (4.65) is independent of the temperature gradient, this
inequality holds regardless of whether or not the process is homothermal.
From (4.5), (4.25), and (4.28), we have, in general,

sym(F'F) = E = F] (E. + D ) Fy, (4.66)

so for the linear extension (4.64), G and E.(}) are related by

ym(F(1)TG) = Fyp(en)" (Ee(t) + By(er) ) Fp(1): 4.67)

For any appropriate values of F(#;), Fp(#1), and Dp(tl) we can assign the value of
any symmetric tensor to E, (t+) by choosing G so that (4.67) is satisfied, for example,
by setting

G = F(r) TFp(t1)" (Ee(t}) + Dy(en) ) Byt (4.68)

Thus, (4.65) holds for any symmetric tensor E. (tl) and scalar ®, whereas the
other terms are independent of Ee( 1) and ©. Therefore, we must have

(81/// JE, — T/pR)(tl) = 0 and (3y/39 + n)(t;) = 0. Since the time #; and the piece-
wise continuous process (F(2), 8(2)), t € [0, 1;], are arbitrary, these restrictions must

14 'We assume that the process described here is dynamically possible in the sense that the body force b
and energy supply rate r needed to satisfy balance of linear momentum (4.1) and balance of energy (4.2)
can be applied, at least in principle.

15 Actually, this conclusion requires the assumption that the heat flux q be bounded for all homo-
thermal processes of the type considered here. Since it is reasonable to expect that the heat flux should be
zero for homothermal processes, this condition is extremely weak.
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hold for all possible values that E, 6, g,, and A take on in any such processes. Thus
T and n must satisfy

= d 0
T = or g (B 6,4 A, 1= = 5 (B 6, 0n A (4.69)

The specific heat (per unit mass) at constant elastic strain is defined by

_de_ m_ &Y (4.70)
CEE_-@—OBQ— 0802,

where the second and third relations follow from e = ¥ + 6 and the potential rela-
tion (4.69),. We assume that Cg, > 0. This is equivalent to assuming dn/00 > 0,
which in turn is equivalent to the condition that entropy is a strictly increasing
function of temperature for fixed E, g,, and Ay. Thus 7 is invertible in 6, and we

have

0 = O(Ee, 1, Gn, Ar), € = &(Ee, 1, gn, Ag). 4.71)
Then, from e = ¥ + 67, (4.69), and the chain rule, it follows that!6
~ de de
= PR — =— s Gny Ak). 4.72
T pR aEe (Ee, na Qm Ak)9 9 317 (Eea n Qn k) ( )

In particular, de/dn > 0, which is equivalent to the condition that internal energy is a
strictly increasing function of entropy for fixed Ee, ¢,, and A,. Thus e is invertible in
n, and we have

77 = ﬁ(Eey €, Qm Ak)’ 9 = é(ECa er Qm Ak)' (4‘73)

Then, (4.72) implies

1 dn
'5 - ae (E61 €,qn, Ak)‘ (4'74)

~ an

T=-— 60— (E s &5 Yny s
The relations (4.69), (4.72), and (4.74) generalize the potentials of classical
thermoelasticity by measuring the elastic strain relative to a time dependent, local

16 An alternate approach is to take entropy as the independent thermodynamic variable from the start.
Then the entropy inequality becomes (4.53) with i replaced by e on the right-hand side, and the left-hand

side replaced by (i)e/alile -1/ pg) : E. + (8e/0n — 6)7. If 6 is replaced by 7 in the definition of instanta-
neous thermoelastic response, then arguments similar to those above yield (4.72) directly, in which case
(4.69) follows from the assumption Cg, > 0.
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reference configuration and by including dependence on the evolving internal
structure.!”

4.6. The plastic dissipation inequality

From the potential relations and the chain rule, we find that the partial derivatives
of ¥, e, and 5 with respect to the internal variables are related as follows:

on de\ _ (Y _Cn 475
g(a%)e (3%:),7 (Eiq,,)e“ PR’ (4.75)
on de WY\ _ Ak
H(BAk) (6Ak) (3?,;) 9= R (4.76)

where the e, 5, and 6 subscripts indicate which thermodynamic variable is being held
constant. From the expression (4.52) for W, the potential relations (4.69), and the
relations (4.75) and (4.76), we see that

IR

n=l - o (4.77)
de \ . de \ A =L oo, 1 g
() o ) A Fea s ke

According to the concept of field averages and fluctuations, the elastic stress
power P, is the rate of change of elastic energy (per unit mass) due to mechanical
power of the average stresses or “long range forces,” while from (4.77), » it is seen that
Wi represents the rate of elastic energy storage (per unit mass) due to the fluctuations
around dislocations or other “short range forces.” Since Wi, although arising from
elastic changes, only exists when the internal structure is changing, it may be asso-
ciated with the rate of change of the stored energy of cold work (and perhaps also
with the localized elastic energy stored in the lattice around point defects). Q, and
A« (or the derivatives of the potentials with respect to the internal variables) may be
regarded as conjugate internal forces that do work against changes in internal variables.

17 Eqs. (4.30) and (4.31) and the potential relations for T yield expressions for the elastic and plastic
stress power in terms of the potential functions; e.g. Pp = 8/3E, : ﬁp Some authors (Rajagopal and
Srinivasa, 1998b) prefer to work with the total strain tensor E and the second Piola—Kirchhoff stress tensor
To relative to the initial configuration. From the relations in Sections 3.1-3.2, we find that T=

(%)FPTOFT and C.=F,;"CF,;'. Then the expression (4.31) for the plastic stress power yields

poPp =CTo : F; '¥,,. From the above relation for C, and C = 2E + I, we obtain an expression for E, in
terms of E and . Fp: 2E. = F,TQE+DF,' — L Then ¢ = y#(E, F,, 6, g, A¢), for example, and (4.69),
implies the potential relatlons To = poaw# /OE and Ty = —pyC~ 1FTBW’/BF The latter relation and the
ayt

: Fp.

above relation for pyP;, yield Pp = — F,
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Since the left-hand side of the inequality (4.65) is zero, by (4.77); and (4.19) this
inequality reduces to

8 =P, — W; >0, (4.78)

that is, the internal dissipation & is nonnegative for all processes. This may be refer-
red to as the plastic dissipation inequality. When written as W; <Pp, the plastic
dissipation inequality states that the rate of change of the stored energy of cold work
cannot exceed the rate of plastic work. Recall that expressions for the plastic stress
power (per unit mass), Py, are given by (4.18), (4.30) and (4.31); alternate expres-
sions are derived in Section 4.8 below.

The plastic dissipation inequality (4.78) holds regardless of the value of the tem-
perature gradient. When V@ # 0, the entropy inequality (4.21) must also be satisfied.
For purely thermoelastic processes, this reduces to the heat conduction inequality

q-Vo<0. (4.79)

However, for inelastic processes (4.79) does not follow from the entropy and plastic
dissipation inequalities given the constitutive assumptions made up to this point.
Nevertheless, the heat conduction inequality (4.79) may be adopted as a separate
constitutive assumption since it is not inconsistent with the entropy inequality or the
plastic dissipation inequality.

For a piecewise continuous process (F(), 6(¢)), the property of instantaneous
thermoelastic response guarantees that the plastic stress power Py, the rate of sto-
rage of cold work W, and the internal dissipation P, — W, are continuous at an
instant when F and 6 are continuous. Although the internal dissipation depends on
the rate of plastic deformation, it cannot depend on the total rate of deformation
(e.g. F or E) or on the rate of elastic deformation (e.g. E.), since these quantities
need not be continuous when F and 8 are continuous.

4.7. Balance of energy and thermodynamic restrictions on pg

Recall that conservation of mass from the initial to the intermediate configuration
is expressed by pr = po/detF, [see (3.12),], or in rate form by (4.16). As noted in
Section 4.4, for a material with instantaneous thermoelastic response these relations
and the continuity of F, and Fp at an instant when F and 6 are continuous imply the
continuity of pr and pr at that instant. Similarly, since Fp(7) depends only on the
initial values of the internal variables and the history of F and 6 up to time #, so does
pr(?). No additional properties of pr have been assumed or derived up to this point.
In particular, we have not assumed that pg is an internal variable or even that it can
be expressed as a function of the internal variables.

We will now show that the property of instantaneous thermoelastic response
implies that the density pgr in the intermediate configuration can be at most a func-
tion of the current values of the internal state variables, say
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PR = PR(Gn, Ak)- (4.80)

To see this, first recall that the constitutive assumption for the Cauchy stress, (4.36),
yields the reduced constitutive relation (4.48) for T when invariance properties are
taken into account and, since T must also satisfy the potential relation (4.69),, we
have

aw = (e, 0, gn, Ap). (481)

= T(Ee, 6, gn, Ak) = PR 3E.

It follows that pr can be at most a function of E., 0, g,, and A;. Therefore,

. 3PR - GPR 3PR 3pR

Now consider a process for which F and 6 are continuous, with F and é possibly
suffering jump discontinuities at time #,. By assumption, ¢, and A, are continuous
for such a process, and as noted above, pr is also continuous, so that at time #,,

0= [onl = 222 [] + G 0L

Proceeding as in the derivation of the potential relations, we see that for given values
of Ee, 6, s, and Ay, the jumps [E.](z;) and [0](#1) can be varied arbitrarily by
varying G and © in the continuous linear extension (4.64), and hence the above
equation can hold only if dpr /9E. = 0 and dpr /30 = 0, which proves the claim.
Observe that (4.80) is consistent with the ideas expressed at the end of Section 2.
Also note that the general relation (4.80) includes the special case where pr is itself
an internal variable, say pr = ¢;. This special case is discussed further at the end of

the next two subsections.
Since pgr is independent of 6, the potential relations (4.69) and the definitions

(4.75); and (4.76); of O, and A yield the relations

(_917_) ___Liai (a") ____I_BQ,, (i"_) __ 1 9A (4.82)
o), pr  \odn)y PR 3  \0Ac), o 0 ‘
On using 6 = Pp — W; and the last expression for W; in (4.77), the energy balance
Eq. (4.11) may be written as

o1 = dlv q

Fr+P,— ———Zann - —ZAk Ay. (4.83)

On expanding the 7 term in (4.83) and using (4.82) and (4.70), we find that balance
of energy may also be expressed as
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. div q 6 aT .
Cg0=— o —
E, +’+pR80 E. + A, (4.84)
where
A=P, — IZTQ_.g?_Q_ﬂ'__l_KA 9?.’.&‘,;
=Fp PRn_ n EY, dn R k EY, k
6 .80, 0 E0A,
=6+ — I +— ) — Ag (4.85)
pR;_—;: 0 I PR = 90

may be referred to as the inelastic heating (per unit mass). When A = 0, the balance
of energy reduces exactly to the thermoelastic case, but now the intermediate con-
figuration for each material point serves as the local reference configuration.

4.8. Decomposition of the plastic stress power

In view of the fact that pr = pr(gx, Ax), it is useful to decompose the plastic stress
power and the various measures of rate of plastic deformation into separate con-
tributions from plastic volume change and dislocation slip. For the tensors D, and
FpF“, such a decomposition involves their spherical and deviatoric parts. From

(4.1§)-, (4.16), and (3.13), we have

1
D, =D, iRy D, =0, ' (4.86)
3 pr
which defines the deviatoric measure D, of plastic shearing, and

1 .
FpF;! = FoFo! — 3221 tr(FoF;") =0, (4.87)

From these relations and (4.14) and (4.15), we obtain an alternate expressmn for D,
that is analogous to the definition (4.15) of Dy,

Dy, = sym[Fe(FpF;’)F;']. (4.88)

By (4.16), — pr/pr = trD, = tr(F F"‘) On the other hand, since pr = Ar(gn, Ar),
we have

pr 1 nopr . | 1 dor
= +—> 2R A 4.89
PR 2 agn It o L oAy A (4.89)
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Note that in the special case where pg is itself an internal variable, say pr = 41, Eq.

(4.89) simply reduces to pr/PrR = §1/41-
The Cauchy stress may be decomposed into a deviatoric part, S, which is a mea-
sure of shear stress, and a spherical part, — plI, where p is the pressure,

T=S—pl, uS=0, p= —%trT. (4.90)

Then by (4.18), (4.86) and (4.90), the plastic stress power (per unit mass) may be
decomposed into a contribution P, from plastic shearing due to dislocation slip and
a contribution ’P" from the rate of plastic volume change:

Pp =P+ P}, (4.91)
where
P;:T:DpzsiDp, P;___EP_R_ (4.92)
p P P PR

By analogy with the definition (3.14) of T, we introduce the stress tensor
o or\ /3
= (detF,.)F,!SF,T = %FQISF;T A (7“) RTSR.. (4.93)

Here and below, the approximations are for small elastic shear strains. By analogy
with the definition (4.27) of Dp, we introduce the plastic shearing tensor

) 2/3
B, = FTD,F, ~ (%‘) RTD,R.. (4.94)

By (4.94), and (4.88), we also have

B, = sym(CerF;1). (4.95)

For plastically incompressible materials (or more generally, whenever pr = 0), Dp
coincides with Dy, and D, coincides with D,,. Note that unlike S and Dy, the tensors S
and Dp are invariant under superposed r1g1d motions and generally not deviatoric.
Instead, they satisfy the constraints

tr(SC.) =0, tr(ByC;") =0. (4.96)

On the other hand, it is clear from (4.94), and (4.93); that f)p and S are approxi-
mately deviatoric for small elastic shear strains. Also note that the analogs of
(4.90), 5 and (4.86), are
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~=§—p£p£Ce“1%§——ﬁI, jp’z—%tr’f‘, (4.97)
and
= 1pr 1( R)wbk
D,=D,--2C.~D,—({—=) =L 4.98
P 3 pr P 3\p/) (498)

From the above relations we obtain expressions for 7, in terms of quantities in the
intermediate configuration,

PrPp, = T: [Sp =S: ISp. (4.99)

These relations may also be written as

prPS = C.T : FoF,' = CS : FoF'. (4.100)
Alternate expressions for the term p/p in (4.92) and in (4.103) below follow from the
identities

ap MT TG TR 1 (4.101)

p p PR PR PR
which imply
p_»p 2T:E (4.102)
P PR 3 pr

For the special case where the internal variable ¢; is taken to be pr, we see from
(4.77); and (4.91) and (4.92) that the plastic dissipation inequality takes the form

——Zan,,+ ZAk Ak<138+(———Q)£’5

R =2 PR

_1g. PRV
_p[S.Dp+(p le)pR]. (4.103)

The same grouping of terms can be used in the energy balance Eqs. (4.83) and (4.84).
Recall that 9, and A are given by (4.75) and (4.76). In particular, when q; = pr we
have

_ illf_ _ oe _ on
&= pR(BpR)e PR (apn) = 0 (aPR) (4104

The combination of terms p — pQ, in (4.103) represents an effective pressure that
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does work against changing intermediate density. This effective pressure consists
essentially of the difference between the usual external pressure and the internal
force conjugate to the intermediate density. The existence of an effective pressure
may have some bearing on the curious fact that metals that display a stress differ-
ential effect (different yield stresses in tension and compression) do not show the
corresponding volumetric change that might have been expected from the normality

rule (Spitzig et al., 1975, 1976).
4.9. The Gibbs function

In plasticity theories, it is common to take stress, rather than elastic strain, as the
primary mechanical variable. Although the Cauchy stress tensor T is a natural
choice, adopting T as the primary mechanical variable does not lead to a theory
equivalent to the one outlined above if the material has anistropic elastic response.
In this subsection we assume that the constitutive relation (4.81) for T is invertible in
E. for fixed 0, g,, and Ay, which also implies fixed pr since pr = pr(qy, Ar). Thus

E = 8(1", 0, g, Ak), (4.105)

and any constitutive relations involving E. may be rewritten in terms of T. In this
case it is useful to introduce the Gibbs function (per unit mass), g, defined by

T:E, T: E
—Y+——=—e+0n+
4 PR 7 PR

(4.106)

In view of (4.105) and the fact that pr = pr(gn, Ax), g may be regarded as a
function of T, 6, g,, and A,

g= s?(i 0, gn, Ak). (4.107)

Eq. (4.106), and the potential relations (4.69) imply that g is a potential for the
elastic strain and the entropy,

E, = pR:—fi’(T, 6, q,,,Ak), 7 =%(1"‘, 6, q,,,Ak). (4.108)

From (4.106);, the expression (4.20); for W, and the relation P, = 'f'/pe) : E,
we find that the rate of change of the stored energy of cold work is given by

Ws=—g+n0+E,: ('f‘/pR).

B Z _ZK:@_ _f:EeéE (4.109)
aqﬂ k=1 aAk . * pR PR ’
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where the second equation follows from the potential relations (4.108).!® When the
relation (4.89) for pr/pr is substituted into (4.109),, we find that the conjugate
internal forces Q, and Ay [see (4.75)—(4.77)] are also given by

dg T :E.dpr d¢ T:E.dm
= e — —— A _ - - . .
Q PR 8%1 PR aqn g PR 0Ay PR 0Ay (4 110)

From (4.101)—(4.102) it follows that the term T/pr : E. in the above relations may
be expressed as!®

T:E 1(31'[_}{1) 3(_17__1_’) (@.111)

bR 2\ p mR 2\pr P

For the special case where pg is itself an internal variable, say pr = g, the expressions
(4.110) for the conjugate internal forces reduce to

5g T:E dq
S = —pp -2 (n=2), Ap — 4.112
01 =—pr— on  pm , On pR (n 2), Ap—pro AL ( )

In this case, the plastic dissipation inequality takes the form (4.103).

4.10. Generalized stress and strain tensors

Most of the results in this section have been expressed in terms of the elastic strain
tensor E. and second Piola—Kirchhoff stress tensor T relative to the intermediate
configuration. For example, we have shown that the elastic-plastic decomposition of
the stress power is given by P = P, + Pp, where prPe = T : E. and PrRPp = T: Dp
In view of this expression for the elastic stress power, the elastic strain tensor E. is
said to be (work) conjugate to the stress tensor T. Of course, other finite elastic strain
tensors may also be used, in which case their conjugate stress tensors are of interest.

Following Hill (1978),%° to any smooth real valued function f defined on the
positive reals and satisfying the conditions f(1) =0, f'(1) = 1, and f’ > 0, we may
associate a tensor valued function f that maps the set of symmetric positive-definite

18 An alternate approach is to regard T, rather than E., as the primary mechanical variable from the
start. Then (4.105), (4.107), and an analogous relation for n are taken as the (properly invariant) ther-
moelastic constitutive assumptions. The entropy inequality becomes (4.21) with W, given by (4.109),. On
expanding the ¢ term in (4.109),, we see that W is equal to (Ee /pr — 0g/9T ) : T + (n — 9g/96)8 plus the
terms on the second line of (4.109). If F is replaced by T in the definition of instantaneous thermoelastic
response in Section 4.4, and if it is assumed that T and 6 may be prescribed arbitrarily, then the entropy
inequality is satisfied iff the potential relations (4.108) hold, in which case W reduces to the expression on
the second line of (4.109). Finally, if the relation (4.105) for E, is assumed to be invertible in T, we obtain
the potential relations (4.69).

19 Also note that 'f"/pg) : Ee = (T/p) : § (1 - B!), where B, = F.Fi = V2.

20 See also Ogden (1984) and Scheidler (1991). All of these authors considered total strain tensors
rather than their elastic part as considered here, but the ideas are essentially the same in either case.
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tensors one-to-one into the space of symmetric tensors. If the symmetric positive-
definite tensor A has eigenvalues g;, then f(A) is defined to be the symmetric tensor
that is coaxial with A but with corresponding eigenvalues f{a;). In particular, the
elastic strain tensor E{ corresponding to the function fis defined by EJ; = f(U,).
The functions fy(1) = In/ and f,,(A) = ;}1—(/1”’ — 1) for any nonzero real m satisfy the
above conditions. This one-parameter family of functions generates a one-parameter
family of elastic strain tensors E/~, which will also be denoted simply by E™:

€

E™ = %(U;" 1) (m#0), E®=In.). (4.113)

In particular, E =1 (U2 -1) =
Again followmg H111 (1978), the (symmetric) stress tensor Tf conjugate to the
elastic strain tensor Ef is defined by the condition that

prPe =Ty Ef (4.114)

for all motions; equivalently,

T, B, =T:E.. (4.115)

e =

For the special case f= f, the stress tensor conjugate to Eg’") is also denoted by
T(m). Note that T =T.

Let Df(U.) denote the derivative of f evaluated at U.. The fourth-order tensor
Df(U,), regarded as a linear transformation on the space of symmetric tensors, is
symmetric and nonsingular. Thus,

Tf: E{ = 'ff: Df(Ue)[ ' e] = wae)[ff] : U,

and

TR =T: % (U0 +0.U) =4 (UeT + T, ) : U = sym(UCT) : U,

so (4.115) implies that

[Df(Ue)[Tf] - sym(Ue'f‘)] U =0

for arbitrary values of U.. The expression in braces is necessarily zero provided that
it is independent of U.. Since T is independent of U, we need only add the natural
assumption that T, is independent of U,. Then Df(Ue)[Tf] = sym(U.T), and the
stress tensor conjugate to the elastic strain tensor E is given by
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T, = Di(U,)™! [sym(Uei")] = Fy, [T] (4.116)

The fourth-order tensor Fy,, regarded as a linear transformation on the space of

symmetric tensors, is symmetric and nonsingular.
Since f is one-to-one, we may express E. in terms of any elastic strain tensor E{ In

view of (4.114), the potential relations (4.69), (4.72), and (4.74) for the stress hold
with T replaced by 'f‘f and E. replaced by E{, for example, Ty = ¢/ 9E[. If this can
be solved for E/ in terms of Ty, then we may define a new Gibbs function gr by
replacing T : E. with T, : E/ in (4.106) (note that T : E. # T, : E/ in general). Then
the relations (4.107)~(4.110) and (4.112) hold with T, E., and g replaced by Ty, E{,
and gy, respectively. The identity (4.111), generalizes to

T lm)
m Ty : Eg _ tr'T B trTm) . 4.117)
PR P PR

In particular, for m = 0 this reduces to

ulg _uT (4.118)
PR P

where 'f‘(o) is the stress tensor conjugate to the logarithmic elastic strain tensor
EQ =In(Uo). _ _ )

Since prPp = T : Dp, we may regard D;, as the (total) plastic strain rate tensor con-
jugate to the stress tensor T. Then the (total) plastic strain rate tensor D{, conjugate
to the stress tensor Ty should satisfy the condition Ty: D] = T : D,. Actually, the
plastic shearing tensor Dy will be of more interest in the remainder of the paper.
Recall from Section 4.8 that the contribution of the plastic shearing to the plastic
stress power Pj, is given by P}, where pR7?§J =T : Dy, so that we may refer to D,
as the plastic shearing tensor conjugate to the stress tensor T. Then the (sym-
metric) plastic shearing tensor Df conjugate to the stress tensor Ty should satisfy the

condition

prPS, = Ts: Df; (4.119)
equivalently,
T:D, =T,:Df. (4.120)

On using the relation (4.116) for 'f‘f, we see that (4.120) implies

T:0, = IFU,[T] DY =T: [FUe[f){,]. (4.121)
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This will hold for all values of T if we take?'

B, = Fo[BS]. b= Fo. [ Bs) (4.122)

Recalling that D, = sym(C.FpF;"), we see that the plastic shearing tensor DS
conjugate to the stress tensor T, depends only on U, and Dy, or equivalently, on Ue

- -1 22
and Fpr .

5. The evolution equations and yield function

The thermodynamic restrictions derived in Section 4 hold for the general class of
materials with instantaneous thermoelastic response, as defined in Section 4.4. In the
remainder of the paper we focus on materials that satisfy evolution equations of the
general form (4.54)—(4.56), which we repeat here:

¥, = H(Fe, 6, qn, A, Fy), (5.1
gm = &Em(Fe, 6, dn, Ak, Fp), (5.2)
A; = Ai(Fe, 6, gn, Ar, Fp), (5.3)
formn=1,...,Nand j,k=1,..., K. Of course, we continue to assume that the

thermoelastic constitutive relations in Section 4.3 hold. Then as shown in Section
4.4, these materials have instantaneous thermoelastic response provided the con-
stitutive functions H, &, and A;, are Lipschitz continuous on any compact subset of
their domain. In Section 5.1 additional restrictions on these constitutive functions
are deduced or imposed. Of course, the property of instantaneous thermoelastic
response continues to hold when these restrictions are made, so the subsequent
constitutive theory will be complete in the sense discussed in Section 4.4. In Section
5.2 we consider transformations to new sets of internal variables. Yield surfaces and
conditions for the onset of the evolution of the internal variables are discussed in
Section 5.3.

21 Note that (4.122), is sufficient but not necessary for (4.121) to hold for all values of T, since D,
might not be independent of T. Indeed, flow rules for which Dp depends explicitly on T are of particular
interest; see Section 5.1.

22 Except for the special cases corresponding to E{ = Eg"‘) with m an integer, explicit component-free
formulas for the above results are rather complicated. In general, it is simpler to express these results in
component form relative to a principal basis for U.. Component formulas for Df(U.) can be found in
Ogden (1984) and Scheidler (1991).
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5.1. Restrictions on the evolution equations

In Section 4.7, it was shown that for a material with instantaneous thermoelastic
response, the entropy inequality implies that pr can depend only on the current
values of the internal state variables. This result and the relation (3.13) between Fy,
Fo, and pr are summarized here:

00 1/3 .
F, = (p—R) Foo o = Arldn A¥). (5.4)

Clearly, we are only free to prescribe an evolution equation for the isochoric part
Fp of Fp, say Fp = H(Fe, 0, gu. Ak, Fp). In view of (5.4), any dependence on the
dilational part of F, may be absorbed into the internal variables, so that
Fp = H(Fe, 0, qn, A, F ) However, it is more convenient to express such a relation
in an equivalent form in terms of the plastic velocity gradient®® F Fp1 ay

FoF5" = Fp(Fe. 6, gn, At Fp). (5.5)

Since tr F Fo -1) = 0, the values of the flow function F, are deviatoric tensors. If
desired, we may use (5.5), (5.4),, and the decomposition (4 87), of F F‘l to obtain
an evolution equation for F, of the general form (5.1), but it is 31mpler to work
directly with (5.5) and (5.4).

The evolution Eq. (5.5) for F, is known as the flow rule. Recall that Fp is invariant
under superposed rigid motlons and hence, so is FpF ~1. Arguing as in Section 4.3,
we find that the flow rule (5.5) is properly invariant iff the flow function F,, does not
depend on the elastic rotation tensor Re, so that

FpF;1 = fp(Ue, 0, gn, Ak, Fp) = ﬁ'p(Ee, 6, qn, Ay, Fp) (5.6)

In plasticity theories, it is common to assume that the flow rule can be expressed in
terms of the stress, say

FoFy" = F5(T. 6,4, Ar, Fy). (.7)

Since T = T(Ee, 6, g, Ax), we see that (5.7) is a special case of (5.6). If the stress—
strain relation is invertible in E., then (5.7) is equivalent to (5.6). Henceforth, we
assume that the stress—strain relation T = %(Ee, 9, g, Ag) is invertible in E..Then T
may be used in place of E, as the primary mechanical variable.

By applying some of the above arguments to the evolution Egs. (5.2) and (5.3) for
the internal variables, we see that properly invariant forms of these equations are

23 This term is motivated by the fact that the analogous expression for the total deformation gradient,
namely ¥F~!, is equal to the spatial velocity gradient. However, F,;,F;1 need not be the gradient of any

vector field.



M. Scheidler, T.W. Wright | International Journal of Plasticity 17 (2001) 1033-1085 1073

dm =‘§m(Ee,9, Gn, Ak, Fp) and A; = Aj(Ee,G, gn, Ar, Fp). We now assume that gy
and A; are independent of Fy, so that

m = bn(Be, 0, gu, AY) = En(T. 6, g Av). (5.8)
Aj = jlj(Ee, 99 qn; Ak) = jj(i‘a 9, 4n, Ak>- (59)

This assumption may be physically motivated as follows. We regard the state of
the material in the intermediate configuration as being characterized solely by the
current values of the internal state variables g, and Aj. The state of the current
configuration is characterized by these internal variables and the thermomechanical
variables F. and 6, which describe the thermoelastic deformation from the inter-
mediate configuration to the current configuration. F, represents the part of the
total deformation gradient arising from plastic slip, which does not distort the
crystal lattice except in the neighborhood of dislocations and other defects. Since the
effects of these short range disruptions in the lattice are, by assumption, accounted
for by the internal variables, F, does not measure any aspect of the state of the
material even though plastic slip is the fundamental process that generates changes
in the internal variables. Thus F, should not be regarded as an internal state vari-
able, nor should any function of Fy, such as the plastic strain tensor %(F;Fp -1I).
The constitutive relations (4.34)—(4.36) for i, e, and T reflect the assumption that
these variables should depend only on the current state of the material. Likewise, the
evolution Egs. (5.8) and (5.9) reflect the assumption that the rate of change of the
state of the intermediate configuration should depend only on the current state.
These assumptions seem to reflect the views of many material scientists and con-
stitutive modelers (Teodosiu and Sidoroff, 1976; Davison et al., 1977; Anand, 1985;
Kocks, 1987; Cleja-Tigoiu and Sods, 1990).

An elementary thought experiment also reveals why Fp, would make a poor choice
for an internal state variable. Consider a simple tension/compression test on a metal
rod. Initially, F = F, = 1. As the rod is pulled in tension beyond the elastic range, it
is reasonable to expect that ||F, — I|| increases with the length of the rod. If the rod
is then compressed back to its original length, the final values of F and F, should be
close to their initial value I. Plastic deformation occurs during both stages of this
process, and the dislocation density would be expected to increase during both
stages as well, but this is not reflected in the final value of Fp.

The exclusion of F, as an internal state variable does not exclude the use of an
“equivalent plastic strain,” say &, as a scalar internal variable.>* Such variables are
typically defined by an evolution equation of the form &, = ¢||Dp||, where the sym-
metric tensor [, is some measure of plastic strain rate and c is a positive constant. If
the flow rule implies that D, is a function of E., 0, g, and A, then this evolution
equation for &, is of the general form (5.8). Note that &, is a nondecreasing function

24 This is not to say that we regard an equivalent plastic strain as an accurate measure of any aspect of
the state of the material, but only that such internal variables fit within our framework.
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of time since &, >0. The objection against F, as an internal variable in the thought
experiment above does not apply to &, since &, would increase during both the
tensile and compressive stages of plastic deformation. Note that the value of &, is
path dependent, so &, is not a true strain measure.

Next, observe that if any one of the variables 8, A, Pp, P, or pRPs depends only
on the current state, then all of them do. Since these are scalar variables, such
dependence must be through the reduced state variables (Ee,®6,gn, Ac) or
(’f" 0, qn, Ak) To prove the observation, first observe that when the evolution Egs.
(5.8) and (5.9) for the internal variables and the constitutive relations (4.45) and
(4.46) for  and e are substituted into the expressions (4.77) for Ws, we see that W
depends only on the state variables. In other words, the rate of storage of cold work
depends only on the current state, a result that is consistent with the views expressed
above. Since the internal dissipation § is given by Pp — W; [see (4.19)], it follows that
& depends only on the current state iff the plastic stress power P, does. Next, recall
that P, may be decomposed into a contribution P, from dislocation slip and a
contribution ’PV from plastic volume change (see Section 4.8). Now by (4.89), (4.80),
and (5.8)—(5. 9) pr/pr depends only on the state variables, so from (4.101) and the
expression (4.92) for ’F’v we see that ’P;’, depends only on the state variables. There-
fore, Pp depends only on the current state iff P; does. Also, since pr depends only
on the internal variables or is itself an internal variable, it follows that P, depends
only on the current state iff pr P, does. Note that pr P}, represents the plastic stress
power per unit volume in the mtermedlate conﬁguratlon due to dislocation slip.
Finally, by (4.75)—(4.76) and (5.8)(5.9), we see that the sums in (4.85); depend only
on the current state. Thus the inelastic heating A depends only on the current state
iff Pp does.

As noted above, the evolution Egs. (5.8) and (5.9) for the internal variables reflect
the idea that the rate of change of the state of the intermediate configuration should
depend only on the current state of the material. For similar reasons, we argue that
“the rate of plastic deformation” should also depend only on the current state. A
precise formulation of this property is complicated by the fact that it is not invariant
under changes in the measure of plastic deformation rate.25 For example, both Fp
and F, Fp1 measure the rate of plastic deformation, but if we assume that one of
these rates depends only on the state variables, then the other necessarily depends
not only on the state variables but also on Fp. Therefore the flow rule actually con-
sists of two parts. First, there is the selection of some preferred measure of the rate
of plastic deformation. Second, there is the choice of the particular flow function,
which is assumed to depend only on the state variables.

In the slip theory for a single crystal or polycrystalline grain, Fp F;1 is expressed in
terms of the shearing rates on the active slip systems, the slip directions, and the
normals to the slip planes (Teodosiu and Sidoroff, 1976; Davison et al., 1977; Asaro,
1983; Obata et al., 1990). In this theory the plastic velocity gradient F,,F‘1 clearly

2 Likewise, the question of the invariance of the form of the evolution equations under transforma-
tions of the internal variables needs to be addressed. This is taken up in the next subsection.
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enjoys a preferred status over other tensor measures of the rate of plastic deforma-
tion. This suggests that we consider flow rules of the form

FpF;T =F p(Ee, 6, gn, Ar) = ﬁp('i‘, 0, q», Ak), (5.10)

i.e. (5.6) and (5.7) with Fp eliminated from the list of arguments. For this class of

flow rules, not only does the preferre_d measure of the rate of plastic deformation,
namely the plastic velocity gradient FpF; ', depend only on the state variables, but
so does the stress power due to dislocation slip. Indeed, recall that by (4.99) and

(4.100), we have
prPS =T :Dp=CT: FF". (5.11)

Thus, when the flow rule (5.10) holds, we see that pR’P; depends only on the state
variables.

Flow rules of the form (5.10) are commonly used not only for single crystals and
polycrystalline grains but also in continuum models of polycrystals. In a continuum
model of a polycrystal, a representative volume element must contain many grains.
Any measure of rate of plastic deformation at a continuum point represents an
appropriate average over these grains. Furthermore, the effects of grain boundaries
must be accounted for, even if the boundaries themselves are not modeled explicitly.
In this case it is not obvious that (5.10) is necessarily the most appropriate form for
the flow rule, and we are led to at least consider other possibilities. In doing so we
are guided by three criteria. First, as discussed above, the flow rule should reflect the
idea that some preferred measure of the rate of plastic deformation depends only on
the state variables. Second, even though we wish to consider measures other than
Fp F;’, the flow rule should ultimately be expressible in the form (5.6) or (5.7),
though not necessarily in the simpler form (5.10). Third, we wish to retain one of the
fundamental properties of the flow rules (5.10), namely, that the stress power due to
dislocation slip (P}, or prP,) depends only on the state variables. As observed
above, this implies that the internal dissipation § and the inelastic heating A depend
only on the state variables.

This third property does not follow from any of the thermodynamic restrictions
derived in Section 4; and in view of (5.11), it need not hold for all flow rules of the
form (5.6) and (5.7) because of the possible dependence of F,,F;1 on Fp. On the
other hand, from (5.11) we immediately see that if the plastic shearing tensor D,
depends only on the state variables, say

6p = Ap(Ee! 0, Qn, Ak) =ijp('f" 9! Qn, Ak)s (5'12)

then so does prP;,. Note that while either (5.10) or (5.12) is sufficient for the stress
power due to dislocation slip to depend only on the state variables, neither relation
is necessary. Indeed, to the right-hand side of (5.10) and (5.12) we could add any
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functions of 'f‘, 0, g», Ak, and F, that are orthogonal to Ce’f“ and ’f‘, respectively.
However, such terms are difficult to motivate, and in any case they would seem to
violate the first criterion mentioned above.

Recall that, in Section 4.10, we introduced the generalized elastic strain tensors E
the conjugate stress tensors Tf, and their conjugate plastic shearing tensors Df Smce

prPS =T : D, =Ty : D}, it follows that if
6:) = ﬁg(E'gs 07 qm Ak) =ﬁfp'('ff’ 67 Qn, Ak)’ (5‘13)

then pRPS depends only on the state variables. Note that the relations (5.12) and
(5.13) are equlvalent in the sense that any relation of the form (5.12) can be expres-
sed in the form (5.13) and vice versa. This follows from (4.116), (4.122) and the fact

that Uk is a state variable. 3
If C. and T commute, then C.T is a symmetric tensor, so in the inner product

(5.11), we may replace F,F;" by its symmetric part:2®
or P = C.T: sym(F,,F;1), if c.T = TC.. (5.14)

Although C, and T need not commute in general, they do commute if the material is
elastically isotropic, that is, if

T = %(Ee, 6, g) (5.15)

for some isotropic function 7.27 From (5.14) it follows that for an elastically
isotropic material a sufficient (but not necessary) condition for the stress power due
to dislocation slip to depend only on the state variables is that sym(f':p F;’) depend
only on the state variables, say

sym(FoFy") = Gp(Ee, 0, gn, A0) = Gp (T, 6, 4n, Ar). (5.16)

Observe that the flow rule (5.10) implies (5.16) as well as the relation (5.12) [since
Dp = sym(C Fp )], whereas neither (5.16) nor (5.12) is sufficient to determine
F,,F -1, To obtam a complete flow rule, (5.12) or (5.16) must be supplemented by an
addltlonal constitutive relation for some tensor measure of plastic spin. We return to

this topic in Section 6.

26 Note that the relations (5.11) and (5 14) for pp\'Ps remain valid if T is replaced with S (see Section
4.8).

27 Using (3.16) it is easily shown that an equivalent relation in terms of the Cauchy stress is T =
T(Ve, 6, g») or some isotropic function . This in turn is equivalent to the condition that T = %(F., 6, g,) =
T(F.H, 6, g,) for any rotation H.



M. Scheidler, T.W. Wright | International Journal of Plasticity 17 (2001) 1033-1085 1077

5.2. Transformations of the internal variables

We have shown that pg can depend at most on the internal variables. As observed
previously, this result includes the special case where pg is itself an internal variable,
say pr = q1. We might also have the situation where pr = pr(gn, Ax) # qi1, but the
function pr is invertible in ¢, in which case we can solve for
q1 = G1(0Rs 92 - - - » g Ar)- Then the internal variable ¢, can be replaced with pg.

Similarly, consider a scalar g that depends only on the internal variables, so that

g = 4(gn, Ax). (5.17)

Then from (5.17), (5.8), and (5.9), we have

g = Zg—*(qn, Ar)gm + Z—(qn, A : A,

N
8
q AQém(Ee, 6, q,,,Ak)+Z (q,,,Ak) AfEe, 6, dn, Ar)
m=l
= £(E.. 6, g, A0) = £(T. 6. gn A), (5.18)

which is an evolution equation of the same general form as the evolution Eq. (5.8)
for the scalar internal variables g,. If the relation (5.17) can be inverted to give
g1 = §1(q, g2, - - -, qn- Ax), then we can replace the internal variable ¢; with g, and
the relation (5.17) may be regarded as a transformation from the original internal
variable g; to the new internal variable q.

Several authors (Lubliner, 1973; Freed et al., 1991) have argued that such trans-
formations should be allowed to depend on the current state of the material. For the
theory considered here, this means that if

g = G(Ee.0, g AW = §(T. 6. 4, Ax) (5.19)

can be solved for g; = §1(E., 6, 4, g2, - - . , gn. Ax), then g should also be regarded as an
internal variable. As these authors have noted, such a generalization implies that ¢
depends linearly on the rates of the external variables, which in our case are E (or

T) and 6. They conclude that the evolution Egs. (5.8) for the original internal vari-
ables should also be extended to include dependence on these rates so that the gen-
eral form of the evolution equations for the internal variables is invariant under
transformations of the form (5.19). We draw a different conclusion, namely, that
transformations of the internal variables of the form (5.19) are inconsistent with the
property of instantaneous thermoelastic response. Indeed, the dependence of ¢ on E.
and 6 implies that ¢ will suffer jump discontinuities for certain continuous, piecewise
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smooth processes (F(?), 6(¢)).?2 Hence, g can be an internal variable only if it is

independent of E. and 6, that is, if (5.19) reduces to (5.17).
The results in the previous two paragraphs generalize to transformations of tensor
internal variables. Recall that the tensor internal variables A; are invariant under

superposed rigid motions. If
A=A(gy, A) and A;=A(gn A, Aa, ..., Ag), (5.20)

then A is also invariant under superposed rigid motions and satisfies an evolution
equation of the same form, (5.9), as the A;. Thus A may be regarded as an internal
variable itself and can be used in place of A,. If dependence on E. or 8 were allowed
in (5.20), then A would not be continuous for all continuous processes (F(z), 6(£)),
and so the property of instantaneous thermoelastic response would be violated.
For the remainder of this subsection we consider a continuous, piecewise smooth
process (F(¢), 6(t)). For the general class of materials with instantaneous thermo-
elastic response, the tensor internal variables Ay and their rates A, are continuous
by assumption, while for the special class of materials considered in this section, the
continuity of Ax and Ay is a derived property. In Section 4.3, we remarked that the
constitutive relations for v, e, and T could also have been expressed in terms of
tensor internal variables B, which transform like the Cauchy stress under super-

posed rigid motions, that is, B} = QB,.QT if x* = Qx. However, continuity of B, is
not to be expected.
For example, consider the case where By = ReAkReT. Since R; is also continuous,

so is By, but
B, = (R:AR]) = R.AR] + QB — B.Q,, (5.21)

where the skew tensor €. is the elastic spin tensor,
Q. =RR!. (5.22)
Since R. can suffer a jump discontinuity at an instant when F has a jump dis-

continuity, it follows that Q., and hence B, need not be continuous. On the other
hand, the corotational rate

v . .
B = B, + BiQ. — Q.B; = R.A;R] = R.(RIB(R,) R (5.23)

is continuous, since both Ay and R. are continuous. Smce R = QR, and A} = Ay,

(5.23), implies that B* = QB,CQT On setting A R BR and A; = RTB;R. in
(5.9), we see that properly invariant evolution equatlons for the By are

28 Qee the discussion of the possible dependence of pr on E. and 8 in Section 4.7.
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V A
B; = R.A;(Ee, 6, 4., R1B(R.)RY. (5.24)

Similarly, if By = FeAkF;r then B, need not be continuous at an instant when F
has a jump discontinuity, but the rate

ﬁk =B, - B.LT - LB, = FAJF =F.(F.'BE,") F, (5.25)

A A
is continuous and transforms as B} = QB.Q". Properly invariant evolution equa-
tions for the B, are

A ~
B; = Fe.A;(Ee, 6, g, F.'B.F;T)FL. (5.26)

From (5.25), and (5.23), we see that for small elastic shear strains,
A 23y
B, ~ (ﬁp‘i) B;. (5.27)

Similar results hold if By = F; TA.F.".
5.3. The yield surface and the structural surfaces

Basic to the idea of metal plasticity is that, for a given temperature and micro-
structure, there is a limit to the stress that the material may sustain without under-
going plastic deformation. This idea is usually expressed by assuming that if the
stress lies within a certain (possibly evolving) surface in stress space, then the
response is purely elastic. For the rate dependent theory considered here, plastic
deformation occurs only if the stress lies outside the yield surface. The rate of plastic
deformation vanishes if the stress lies on or inside the yield surface and would typi-
cally be expected to increase as the stress moves further outside the yield surface. In
the classical rate independent theory, the stress never lies outside the yield surface,
so plastic deformation can occur only when the stress lies continually on the yield
surface, which must evolve in a compatible way. In the present formulation, the rate
independent theory is expected to hold only in the limit of quasi-static deformations.

It should be emphasized that the theoretical framework developed up to this point
is independent of the assumed existence of a yield surface. The results are applicable
to viscoplasticity theories with no explicit yield surface as well as to theories with
single or multiple yield surfaces. Examples of theories with no explicit yield surface
can be found in Anand (1985), Bodner and Lindenfeld (1995), and Krempl and
Gleason (1996), although the latter two papers employ a different kinematic frame-
work than used here. In the remainder of this subsection we consider a single explicit
yield surface as outlined above.
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The yield surface may be described in terms of yield functions for f as the set of
points satisfying?®

_f‘(’f" Os qna A/\') =.]?‘(Ees 9’ qns Ak) = O' (5'28)

For fixed values of the temperature and the internal variables, (5.28) describes
corresponding yield surfaces in stress space and elastic strain space. For fixed values
of the internal variables, (5.28) describes corresponding yield surfaces in stress—
temperature space and strain-temperature space. It is conventional to assume that
the yield functions are positive in the region outside the yield surface and negative in
the region enclosed by the yield surface. Plastic deformation is occurring iff the
stress or elastic strain lies outside the yield surface, that is,

Fo£0 iff 7(T,0,qn Ar) =F(Ee 6, gu Ax) > 0. (5.29)
¢}

The inequality (5.29) should not be regarded as a loading condition. If this inequality
is satisfied then Fp +# 0 regardless of whether or not the stress is increasing.
Typically, the yield surface evolves during plastic deformation due to changes in
the internal variables. However, we do not assume that the yield condition (5.29)
necessarily governs the onset of changes in the internal variables. In the present
theory, there need not be an exact correlation between changes in internal variables
and changes in plastic deformation. This feature is completely contrary to the defi-
nition, apparently first given by Rice (1971) and subsequently used by many authors
since, that increments of plastic strain occur as a consequence of increments in the
internal variables.?® It must be emphasized again that in the present view, plastic
strain may be calculated as a consequence of deformation, but it is never regarded as
an internal variable itself in any fundamental way or even directly connected to
internal variables as suggested by Rice’s definition. Indeed, the plastic strain and the
internal variables must be calculated independently as suggested by two limiting
cases. First, note that the internal variables may all saturate at extreme deforma-
tions, but plastic straining continues, that is, when the creation and annihilation of
dislocations balance. In this case, ¢, =0 and A; =0, but F, #0. At the other
extreme, the stress state may lie well within the yield surface so that no plastic
deformation can occur, but thermal excursions may alter the internal variables. In

29 We could have started with the (apparently more general) assumptions that the yield function
depends on the current state (F., 8, g,, Ax) and is invariant under superposed rigid motions. Then the
reduced forms in (5.28) follow by the arguments used in Section 4.3. Note that the various yield functions
are not unique since multiplication by any positive function of the same variables results in a function
with the same properties.

% In the present notation, that definition may be written for the case of scalar internal variables as
Ep = Z"=, (0E/8g,)gn, where E = E To, 6, g ). Recall that E is the total strain tensor and Ty is the second
Piola-Kirchhoff stress tensor relative to the initial configuration [see (3.2) and (3.3)}.
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this case, which may be called static recovery, ¢, # 0 or Aj # 0 for some m or j, but
E, = 0.3! Furthermore, in the case where one of the internal variables is a work
hardening parameter «, it is not inconsistent to have £ < 0 even when Fp # 0. This
situation may be called dynamic recovery. If the theory is to include saturation and
recovery, there can be no general direct relationship between increments of internal
variables and increments of plastic strain.>?

Recall that the rate of change of the temperature is governed by the energy bal-

ance Eq. (4.84). It is common to assume that the in€lastic heating term A in (4.34) 18
approximately proportional to the plastic stress power, say

A = BP,, (5.30)

where B is a constant which represents the fraction of the rate of plastic work con-
verted to heating. In stating this approximation, most authors cite the experimental
work of Taylor and Quinney (1934) who concluded that approximately 85-95% of
the plastic work is converted to heat. Thus B is often taken to be a constant between
0.85 and 0.95,with 1 — B interpreted as the fraction of plastic work stored in the
material, that is, the stored energy of cold work. It has been known in the metal-
lurgical literature for a long time that B, as defined by (5.30), is not a material con-
stant but in fact may vary enormously with temperature, strain, and plastic strain
rate. Recently, there have been both theoretical and experimental studies that
attempt to clarify and model this phenomenon; see Bodner and Lindenfeld (1995),
Kamlah and Haupt (1998), Rosakis et al. (2000), and the references therein. Here we
limit ourselves to a few general remarks about the variable g. If any one of the
variables 8, A, Py, 'P;, or pRP; depends only on the state variables, then (as we
observed in Section 5.1) all of them do, and hence, by (5.30), so does 8. In parti-
cular, the third criterion for the plastic flow rule considered in Section 5.1, namely,
that the plastic stress power due to dislocation slip depends only on the state vari-
ables, guarantees that g depends only on the state variables. In view of the expres-
sion (4.85), for A, it would appear unlikely for B to be constant in general. However,
in the case where all internal variables saturate, it is clear from (4.85), that = 1. On
the other hand, if significant dynamic recovery occurs with rapid release of energy
previously stored as cold work, it would appear that B could even be greater than
one. Finally, note that a relation of the form (5.30) is generally not possible in the
case of static recovery at zero pressure. Indeed, since Fp =0 and p = 0, both P; and
Pl‘; are zero, by (4.92). Hence P, = 0, but by (4.58); we see that the inelastic heating

A need not be zero. . .
As remarked above, we do not assume any gencral direct relationship between

increments of internal variables and increments of plastic strain. Likewise, the conditions

31 Since PR = f)g(q,,., Ay), pr may also be changing during such a process, so that Fp # 0. Measure-
111;e5n7ts 1(;2 gxe increase in pr during annealing have been made by Clarebrough et al. (1952, 1955, 1956,

32 Examples of consti_tutive relations for modeling recovery and saturation can be found in Brown et
al.(1989), Bodner and Lindenfeld (1995), Bammann et al. (1995), and Kamlah and Haupt (1998). Busso
(1998) has developed an internal state variable model for dynamic recrystallization.
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for the onset of the evolution of the internal variables need not be governed by
the yield function. Instead, we assume the existence of scalar functions f,, and Aj,

possibly distinct from the yield function f, such that

ql7z # 0 iff j;n (T, 0, qn, Ak) > 0, (531)
A0 it A(T.0,q.8c) > 0. (5.32)

Of course, the above conditions can also be expressed in terms of the elastic strain
E.. For fixed values of the internal variables, the conditions f,,, (T 6, qn, Ak) 0 and

J(T 0, gn, Ak) 0 describe surfaces in stress-temperature space. Each surface
encloses a region within which the corresponding internal variable cannot evolve
further from its present state. These surfaces may be referred to as structural sur-
faces. Depending on the physical interpretation of the internal variables, these
structural surfaces may coincide with each other or with the yield surface at some,
none, or all points. For the discussion of the existence and uniqueness of solutions to
the evolution equations at the end of Section 4.4, the conditions (5.31) and (5.32)
and the yield condition (5.29) are regarded as being incorporated in the evolution
equations. For example, the function £,, in (5.8) must be zero in the region described
by the inequality f;, (T, 6, gn, Ax) <O.

The elastic range of the material is the set of states for which Fp =0,4¢,=0,and
A- = 0 for all m and j. For fixed values of the internal variables, the elastic range in
stress -temperature space is the intersection of the regions described by the inequal-
ities f(T 0, gn, Ax) <0, f,,,(T 0, gn, Ar) <0, and A; (T 8, 4u, Ax) <0. Thus the elastic
range is described by an inequality of the form l(T 0, gn, Ak) <0, where the elastic
limit function / is the pointwise maximum of the functions f fm, and 4; ;. We assume
that / (0, 6o, qn, Ak) < 0, which implies that the unstressed intermediate configuration
is in the elastic range. It follows that the material may be unloaded from any state
within the elastic range without undergoing plastic deformation or changes in the

internal variables.
Observe that for tensor internal variables B, that transform like the Cauchy stress

under superposed rigid motions, the analog of the condition (5.32) involves a cor-
otatignal rate (see Section 5.2) rather than the material time derivative. If B; # 0
and F, # 0, then B, will generally be nonzero even in the elastic range. For example,
if B; = R. AR then by (5.23) we see that B; = Q.B — BiQ. in the elastic range,
so that B # 0 if B, does not commute with the elastic spin tensor Q.. In particular,
a back stress tensor that transforms like the Cauchy stress will generally evolve even
during elastic deformations.

6. Discussion

In Section 5.1, we argued that a reasonable restriction on the flow rule is that the
plastic stress power P}, due to dislocation slip should depend only on the state
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variables. We observed that this property holds if any one of the following con-
ditions is satisfied (for condition 3 we must also assume an elastically isotropic

material):

1. Ep F;1 depends only on the state variables.
2. Dy, depends only on the state variables.
3. sym(FpF,") depends only on the state variables.

We also noted that condition 1 implies conditions 2 and 3. Since neither D, nor
sym(FoF;") suffices to determine FyF,", only condition 1 determines a complete
flow rule once the dependence on the state variables is specified. If condition 3 is
assumed, then the flow rule can be completed by specifying a constitutive relation
for skw(FpF,;‘). Similarly, if condition 2 is assumed, then the flow rule can be

completed by specifying a constitutive relation for skw(Cer Fo 1); indeed, since
D, = sym(C.Fp F>1), the two relations determine C.F, F.', and hence FpF; T We

may interpret skw(F,Fg') and skw(C.F,F;") as tensor measures of plastic spin.
Note that in either case, P, depends only on the state variables even if these plastic
spin tensors depend on F, as wells the state variables.

On the other hand, we have argued that “the rate of plastic deformation” should
depend only on the current state, so that part of the determination of the flow rule
involves the choice of a particular measure of plastic deformation rate. If this mea-
sure is decomposed into some preferred measures of plastic shearing and plastic
spin, then it seems reasonable to require that each of these measures depend only on
the state variables. For the two cases considered above, this would mean that both
symglip F5') and skw(F,F,") depend only on the state variables or that both D, and
skw(C.FpF;') depend only on the state variables. It should be clear from the above
discussion that each set of conditions is in fact equivalent to condition 1. Thus if we
wish to consider flow rules outside of the class defined by condition 1 but for which
conditions 2 or 3 hold, then we need to consider different preferred measures of
plastic spin. Of course, measures of plastic shearing other than D, and sym(Fp F;’)
might also be considered. These topics are pursued in a follow-up paper (Scheidler
and Wright, 2001).
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Abstract

Classes of flow rules for finite viscoplasticity are defined by assuming that certain measures
for plastic strain rate and plastic spin depend on the state variables but not on the plastic
deformation. It is shown that three of these classes are mutually exclusive for finite elastic
strains. For small elastic shear strains, two of the three classes are approximately equivalent.
A number of exact and approximate kinematic relations between the various measures for
plastic strain rate and plastic spin are derived. Some inconsistent flow rules encountered in the
literature are also discussed. Throughout the paper, arbitrarily anisotropic materials are con-
sidered, and some of the simplifications resulting from the assumption of isotropy are noted.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a recent paper, Scheidler and Wright (2001), began a review of the fundamental
ideas and continuum framework that was deemed necessary for a thermo-
dynamically consistent theory of thermoviscoplasticity with internal variables. In
that paper, the fundamental observation from which all else follows is that even in a
heavily deformed crystalline solid, the average spacing between dislocations is much
larger than the typical dimensions of the basic lattice. As a consequence, stretching
and distortion of the crystal lattice must be the origin of stress and the transmission
of forces in thermoplastic, as well as thermoelastic solids. A natural extension of this
fundamental idea is that plastic deformation occurs when the current stress exceeds
the current capacity of the lattice. The lattice then becomes unstable so that existing
dislocations begin to move and new ones may be generated. Furthermore, the rate of
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plastic deformation increases in some sense with the degree to which stress exceeds
the basic stress carrying capacity of the lattice.

The paper referred to above dealt only with the basic kinematics and thermo-
dynamics of finite plastic deformation, relying on the standard multiplicative
decomposition of the deformation gradient into elastic and plastic parts. This paper
takes up where the previous one left off, focusing on the notion of the evolutionary
rate of plastic slip, that is, the plastic flow rule. In particular, we examine the con-
sequences of demanding that all constitutive quantities, including the evolutionary
rates of plastic deformation and internal variables, must depend only on internal
and thermoelastic state variables, but in no way upon plastic slip itself. The reason
for this restriction is that many paths of plastic deformation may lead to the same
thermoelastic and internal state, as expressed by stress, temperature, and the set of
internal variables. Thus, the plastic part of the deformation, in particular the slip,
cannot itself be part of the prescription of internal state.

Although the basic motivation in the last paragraph is clear, its mathematical
expression is not entirely straightforward. The reason for this is that there is no
unique way to choose a kinematic term to measure “the rate of plastic slip,” and in
fact several different measures have been chosen in the literature. While it is often
possible to express one measure for the rate of plastic slip in terms of another, such
expressions often involve an explicit dependence on the plastic slip itself. When that
is the case and one measure for the rate of plastic slip depends only on the internal
and thermoelastic state variables, then the other measure must necessarily depend
explicitly on the plastic slip as well as the state variables. With the restriction that
plastic slip is not allowed to be an internal variable, it follows that the two different
measures for the rate of plastic slip are not equivalent in the sense that both mea-
sures cannot depend on the state variables alone.

It is clear that determination of the flow rule, which is one of the central problems
for plasticity theory, actually consists of two parts. First, there is the choice of a
preferred measure for the rate of plastic slip—*“preferred” in the sense that this
measure is assumed to depend on the state variables only. Second, there is the choice
of the particular flow function that relates the preferred measure to the state vari-
ables, but in this paper we do not pursue this aspect of the flow rule further. Instead,
we regard the flow function as essentially arbitrary, so that each preferred measure
for the rate of plastic slip defines an entire class of flow rules. One of the main pro-
blems addressed in this paper is whether two classes defined by different measures
for the rate of plastic slip have any flow rules in common.

The paper proceeds as follows. Section 2 begins with a brief reiteration of notation
and fundamental kinematics. This is followed by properly invariant statements of
the thermoelastic constitutive relations and the evolution equations for the internal
state variables. The internal and free energies, the second Piola—Kirchhoff stress,
and the evolutionary rates of the internal variables are assumed to depend on the
state variables but not on the plastic slip (i.e., the isochoric part of the plastic
deformation), although they may depend on the volumetric part of the plastic
deformation since the intermediate density may itself be an internal variable. All
constitutive relations are formulated in the intermediate configuration.
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Three restrictions on the viscoplastic flow rule are imposed in Section 3. The first
has already been discussed above, namely, that some preferred measure for the rate
of plastic slip should depend on the state variables but not on the plastic slip itself.
The second restriction requires that the stress power due to plastic slip should also
depend only on the state variables. The third restriction requires that, regardless of
the preferred measure for the rate of plastic slip, the plastic velocity gradient
depends at most on the state variables and the plastic slip. The second and third
restrictions limit the choices of preferred measures for the rate of plastic slip. The
possibility that the plastic velocity gradient depends on the plastic slip cannot be
ruled out if certain measures for the rate of plastic slip other than the plastic velocity
gradient are to depend only on the state variables.

In continuum models for polycrystals the flow rule often takes the form of sepa-
rate constitutive relations for a “plastic strain rate” and a “plastic spin.”” We follow
this practice in most of the paper. Consequently, the first restriction mentioned
above is relaxed by requiring that some preferred measures for plastic strain rate and
plastic spin depend only on the state variables. Several choices have been made by
various authors in the plasticity literature for the proper measures of plastic strain
rate and plastic spin. A few examples are discussed in Section 3, and in Section 4 we
compare six representative choices. It turns out that four of these six choices define
equivalent classes of flow rules, so that there are actually only three mutually
exclusive classes. No material symmetry restrictions are imposed, although one of
the classes generally fails to satisfy the criterion for the plastic stress power unless
the material is elastically isotropic. Section 4 closes with a discussion of the special
nature of isotropic materials with only scalar internal variables.

Results stated without proof in Section 4 are derived in Sections 5 and 6. The
proofs rely on a number of purely kinematic relations between the various measures
for plastic strain rate and plastic spin. In Section 5 we complete the proof that four
of the six classes of flow rules introduced in Section 4 are equivalent. The proof that
this class and the remaining two classes are mutually exclusive is given in Section 6.
Both sections contain further discussion of the role of plastic spin.

The results up to this point in the paper are valid without restrictions on the
magnitude of the elastic part of the deformation. The approximations following
from the assumption that elastic shear strains are “small” are carefully examined in
Section 7. A subtle point that seems to have been overlooked by some authors is that
in the approximation of one measure for plastic strain rate in terms of another, the
products of elastic shear strain and plastic spin terms are not necessarily negligible
unless the plastic spin is bounded by the plastic strain rate. Several equivalent
statements of this condition, involving different plastic strain rate and plastic spin
measures, are considered, and it is shown that whenever such bounds hold, two of
the mutually exclusive classes of flow rules considered in Section 4 are approx-
imately equivalent for small elastic shear strains.

For some flow rules encountered in the plasticity literature, the chosen measure
for the rate of plastic slip is inconsistent with the variables on which it is assumed to
depend. Section 8 contains a discussion of this issue, based in part on observations
by Nemat-Nasser (1990, 1992).
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In Section 9 we examine a fourth class of flow rules which is motivated by the
results in Section 8. It is shown that flow rules in this fourth class that do not belong
to one of the classes considered previously fail to satisfy the criterion for the plastic
stress power.

The paper closes with a discussion of the main results in Section 10.

Appendix A contains some purely algebraic results used in the derivation the
kinematic relations for plastic strain rate and plastic spin. Some of the more tech-
nical details in the derivation of these kinematic relations have been relegated to

Appendix B.

2. Preliminaries

The kinematics of finite elastic—plastic deformation is based on the multiplicative
decomposition of the total deformation gradient F into an elastic part F, and a

plastic part F, ,
F = F,F,. ' 2.1)

It is conceptually useful to interpret F, as mapping a neighborhood of a point in the
undistorted initial configuration onto a local, plastically deformed, intermediate
configuration at the initial temperature. Then F, is interpreted as a thermoelastic
deformation of this intermediate configuration onto a neighborhood of a point in
the current configuration at the current absolute temperature 6.

The plastic deformation F, can be decomposed into an isochoric part F, repre-
senting plastic slip and a dilatational part, (detF,)', representing any plastic
volume change due to changing numbers of dislocations! or the nucleation and
growth of voids. If py and pr denote the densities in the initial and intermediate
configurations, respectively, then det F,=py/pr. In Scheidler and Wright (2001),
Section 4.7, it was shown that the entropy inequality and the property of instanta-
neous thermoelastic response imply that the density pg in the intermediate con-
figuration can be at most a function of the internal state variables. The scalar
internal variables are denoted by ¢,...,gy and the tensor internal variables by
Ay,. . .,Ag. Depending on the context, we use g, and 4, to denote either typical sca-
lar and tensor internal variables or the lists of these variables. Then we have

1/3
F = ('8—0') F ’ detFp = lv pR = ﬁR(qm Ak)' (22)

The relation (2.2); includes the special case where pg is itself an internal variable, say
PR =¢q;. Plastic incompressibility, which is not assumed here, can be imposed by
taking pr=po, in which case F,=Fp.

1 References to the literature on this subject are given in Scheidler and Wright (2001), Section 2. See also
the recent paper by Altenbach et al. (2001) for a discussion of plastic volume change in grey cast iron.
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The tensors F, and F, have unique polar decompositions

F.=R.U,=V.R., Fp = RyUp, = V,R,. 2.3)

R. and R, are the local elastic and plastic rotation tensors, respectively. The sym-
metric positive-definite tensors U, and V, (U, and V) are the right and left elastic
(plastic) stretch tensors. If the density in the current configuration is denoted by p,
then

detF, = detU, = detV, = "—:, detU, = detV,, = 1. 2.4)

The elastic finite strain tensor E, is defined by

E = l(ce - I, C.=F'F,=U2 (2.5)
2 e [4

The Cauchy stress tensor is denoted by T. The second Piola—Kirchhoff stress tensor
T relative to the intermediate configuration is given by

T = (detF,)F,\ TF;T = %FiF;‘ TF; 7. (2.6)

We assume that F, and the internal state variables g, and A, are invariant under
superposed rigid motions. It follows that F,, R,, U,, and V, as well as U,, C,, E,,
and T are also invariant. For reasons discussed in the Introduction [see also Schei-
dler and Wright (2001), Section 5.1], F, is not regarded as an internal state variable.
Similarly, any functions of F), such as R,, U, and V), are excluded from the list of
internal variables. The state of the material is characterized by the thermo-
mechanical variables F, and @ and the internal variables ¢, and A4;. For the con-
stitutive relations considered in this paper, which may be thought of as formulated
in the intermediate configuration, any dependence on F, arises only through U, or,
equivalently, E,. It will be convenient to let S denote any list of (reduced) state
variables, for example,

8 = (Uea 6’ Qn, Ak) or (Ee, 99 qn’ Ak)‘ (2‘7)

Of course, an equivalent list can be obtained by replacing U, with any invertible
function of U.,, such as Uf = C,. Also, the entropy n may be used instead of € as the
independent thermodynamic variable.

Let e and ¢ = e — 6n denote the internal energy and free energy, respectively. We
restrict attention to materials that satisfy thermoelastic constitutive relations of the form

e = &(S), v = %(S), T=7(), (2.8)
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and evolution equations for the internal variables of the form

Gm = Em(S), A; = A/(S), 2.9)

where a superposed dot denotes the material time derivative. In other words, the
internal and free energies, the second Piola—Kirchhoff stress, and the evolutionary
rates of the internal variables depend only on the state variables. Motivation for
these assumptions has been given in Scheidler and Wright (2001), Section 5. We also
assume that the stress—strain relation (2.8); is invertible in the elastic stra_in E,, so
tha E, = 8(7' .0, gn, Ar). Then the second Piola—Kirchhoff stress tensor T may be

regarded as a state variable, and we may take

S= (T, 0, g, Ak) (2.10)

in the above relations.
The constitutive relations (2.8), (2.9), and (2.2) are properly invariant. Of course,
the constitutive functions in (2.8) and (2.9) depend on the particular list of state

variables represented by S.

3. Restrictions on the flow rule

To complete the constitutive framework outlined in the previous section we must
specify the general form of the viscoplastic flow rule, that is, the form of the evolu-
tion equation for the plastic slip Fp. The second law of thermodynamics (in the form
of the Clausius—Duhem inequality) requires that the flow rule be consistent with the
plastic dissipation inequality, which states that the rate of change of the stored
energy of cold work cannot exceed the rate of plastic work (Scheidler and Wright,
2001, Sections 4.6 and 4.8). This imposes only mild restrictions on the flow rule.
Consequently, a number of authors have postulated additional thermodynamic cri-
teria from which more severe restrictions on the flow rule can be derived. An
example of such a criterion is a “‘maximum dissipation principle”; see Rajagopal and
Srinivasa (1998), Mollica et al. (2001), Srinivisa (2001), Lubliner (1984), Deseri and
Mares (2000), Cermelli et al. (2001), and the references cited therein for various
formulations and implications of this principle.

3.1. General restrictions on the flow rule

In this paper we consider some relatively weak restrictions on the flow rule. In
particular, we examine the consequences of demanding that the flow rule satisfies the

following criteria (Scheidler and Wright, 2001, Sections 4.4 and 5.1):
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1. Some preferred measure for the (total) rate of plastic slip depends only on the
current state of the material and thus is a function of the state variables S
only. Alternatively, some preferred measures for plastic strain rate and plas-
tic spin depend only on the state variables S.2

2. The stress power due to plastic slip also depends only on the state variables S.

3. Fpdepends at most on the state variables S and the current value of F,.

A fourth criterion involving bounds on the platic spin is considered in Section 7 in
relation to the approximations for small elastic shear strains; see also the discussion
in Section 10. These restrictions do not seem to follow from any maximum dissipa-
tion principle. On the other hand, for rate-dependent materials they are not neces-
sarily inconsistent with a maximum dissipation postulate and thus might be invoked
in conjunction with it.

The third criterion above ensures that the constitutive theory is complete in the
sense that once all constitutive functions are specified, the values of the internal
variables and the plastic deformation F, as well as the values of the thermoelastic
variables F,, T, T, , 6, and 7 are determined at any time ¢ by the history of F and 6
up to time ¢ and the initial values of the internal variables.? Furthermore, the mate-
rials described by these relations have the property of instantaneous thermoelastic
response (Scheidler and Wright, 2001, Section 4.4). This property ensures that
incremental loading waves in a plastically prestressed material travel at the elastic
wave speed and that strain rate jump tests show an initially elastic transient as the
flow stress switches continuously from one constant strain rate to another. These

properties would not hold if any of the rates T, F, E., or § were included in the list
of arguments in the evolution equations for F, or the internal state variables.

Motivation for the first criterion above was given in the Introduction. The second
criterion is more difficult to motivate physically. As discussed below, all three cri-
teria are satisfied by viscoplastic slip. models for single crystals as developed, for
example, in Teodosiu and Sidoroff (1976). The fact that the second criterion is
satisfied by these physically based theories was the primary motivation for including
it here. We do not claim that models for which this plastic stress power criterion
does not hold are necessarily unphysical, only that this criterion seems worthy of
consideration.

Regarding the second criterion, we recall that the plastic stress power per unit
mass, P,, can be decomposed into a contribution P, from plastic slip and a con-
tribution P, from plastic volume change, and that glven the assumptions in Section
2, P, necessarlly depends only on the state variables (Scheidler and Wright, 2001,
Sectlons 4.8 and 5.1). Hence, the second criterion above, namely, that P, depends
only on the state variables, is equivalent to the requirement that the (total) plastic
stress power P, depends only on the state variables. Also note that ppP, is the stress
power due to plastic slip, measured per unit volume in the intermediate configuration.

2 As discussed below, this alternative criterion is less restrictive than the analogous criterion for the

total rate of plastic slip.
3 It is assumed that F,=1, and hence F,=1, initially.
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In view of the fact that pg is a function of the internal variables or is itself an internal
variable, the requirement that P, depends only on the state variables is equivalent to
the requirement that prP, depends only on the state variables. Since the contribu-
tion P, from the rate of plastic volume change is not discussed further in this paper,
we will refer to P, or pgP, simply as the “plastic stress power.” A general expres-
sion for the plastic stress power is

prP; = C.T: FpF," (3.1)

(Scheidler and Wright, 2001, Section 4.8).
Although we do not invoke a maximum dissipation principle here, our second

criterion does place some restrictions on the dissipation. Indeed, the constitutive
assumptions in Section 2, the third criterion above, and the Clausius—Duhem

inequality imply that the following conditions are equivalent:

2. The plastic stress power depends only on the state variables.

2. The (rate of) internal dissipation é depends only on the state variables.
2.” The inelastic heating A depends only on the state variables.

See Scheidler and Wright (2001), Section 5.1.

An equivalent statement of the third criterion is that the *“plastic velocity gradient™
FoF o ! must ultimately be expressible in the form

FoF, ' = ®(S, Fp), (3.2)

regardless of the preferred measures alluded to in the first criterion. Since
tr (F oFp 1) = 0, the function ®, in (3.2) must be deviatoric. Note that any flow rule

of the form (3.2) is properly invariant. Now suppose that the preferred measure for
the rate of plastic slip is taken to be the plastic velocity gradient. In view of the
assumption that F,, is not a state variable, both the first and the third criteria above
can be satisfied by eliminating the dependence of the function ®, on £, in (3.2). The
class of flow rules of this form is designated Class I.

Class I F F;' =®,S). (3.3)

Since C, and T are state variables, the constitutive relation (3.3) and the expression
(3.1) for the plastic stress power imply that the plastic stress power depends only on
the state variables S. Thus the second criterion above is also satisfied for flow rules
in Class I. Flow rules in this class arise in viscoplastic slip models for a single crystal
or a polycrystalline grain (Teodosiu and Sidoroff, 1976).

While flow rules in Class I are also used in continuum models for polycrystals, in
view of the complicating effects of grain boundaries it is not clear that a mathematical
description of viscoplastic flow in polycrystals should be limited to flow rules in this
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class. We also wish to consider flow rules outside Class I but still satisfying the three
criteria discussed above. Regarding the third criterion [in the form (3.2)], the possi-
bility that the plastic velocity gradient may depend on the plastic slip F,, cannot be
excluded if certain measures for the rate of plastic slip other than the plastic velocity
gradient are to depend only on the state variables.

3.2. Preferred measures for plastic strain rate and plastic spin: general remarks

In the continuum modeling of polycrystals it is common practice to decompose a

preferred measure for the total rate of plastic slip, e.g., F oFp I into a plastic strain

rate and plastic spin and then specify separate constitutive relations for the latter
two measures. These two constitutive relations form the flow rule. More generally,
even if a preferred measure for the total rate of plastic slip does not suggest itself,
theory or experiment may suggest preferred measures for plastic strain rate and
plastic spin—preferred in the sense that the current values of these measures are
expected to depend only on the current state of the material. If D, denotes the pre-
ferred measure for plastic strain rate* and W, the preferred measure for plastic spin,
then the flow rule takes the form

D, = D,(S), W, = W,(S). (3.4)

Since the list S of state variables is invariant under superposed rigid motions, D, and
W, must also have this property and thus may be thought of as residing in the
intermediate configuration. Of course, (3.4) may always be transformed to an
equivalent flow rule in the current configuration, but such transformations will not
be discussed here.

We emphasize that (3.4) is regarded as a flow rule, not as a definition of the pre-
ferred measures D, and W,,. D, and W, are constitutive functions of the state vari-
ables only and thus do not depend on F, itself, whereas the definitions of the
symmetric tensor [, and the skew tensor W, are purely kinematic and may be
assumed to have the general form

D, = lﬁ),,(F,,,F,,, Ce), W, = W,,(F,,,F c) (3.5)

Motivation for including a possible dependence on C, (equivalently, U, or E,) in
(3.5) is given by the example at the end of this section. Of course, not all relations of
the form (3.5) lead to physically reasonable measures for plastic strain rate and
plastic spin, but it is not our intention to address this issue here. Instead, we will be
content to study a few representative examples. Nevertheless, it is clear that if the

4 The total plastic strain rate contains contributions from plastic volume change as well as plastic slip.
To distinguish between the two, the latter contribution was referred to as plastic shearing in Scheidler and
Wright (2001). Since the rate of plastic volume change is not discussed further in this paper, we use the
term “plastic strain rate” to refer to the contribution from plastic slip only.
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third criterion above is to be satisfied for a flow rule of the form (3.4), that is, if the
flow must ultimately be expressible in the form (3.2), then D, and W, must essen-
tially determine F,F !, In this regard, note that if there exists a kinematic relation of
the form

FoF ;! = v(Dp, Wy, Fp, C.), (3.6)

then substitution of the flow rule (3.4) into this relation yields an alternate expres-
sion for the flow rule in terms of the plastic velocity gradient:

FoF ;' = v(Dp(S), Wi(S), Fp, Ce)- (3.7

And since C, is a state variable, the third criterion (3.2) will be satisfied. Therefore
we wish to confine our attention to plastic strain rate and plastic spin measures [,
and W, for which a kinematic relation of the form (3.6) holds. For some of the
measures considered in this paper, it is a nontrivial task to verify that a relation of
the form (3.6) follows from the given definitions of B, and W, [in the form of special
cases of (3.5)].

A complete description of the flow rule requires specification of the preferred
plastic strain rate and spin measures [i.e., the functions D, and W, in (3.5)] and of
the flow functions D, and W, in (3.4). The latter problem is outside the scope of
this paper. Instead, we regard D, and W, as arbitrary symmetric and skew tensor-
valued functions of the state variables,” so that each choice of D, and W, defines an
entire class of flow rules. These classes include the special case where the spin func-
tion W, is identically zero, that is, flow rules for which the preferred plastic spin

measure W,= 0 for all motions.
3.3. Preferred measures for plastic strain rate and plastic spin: some examples

As a simple example, let the preferred plastic strain rate and plastic spin be the
symmetric and skew parts of the plastic velocity gradient, that is,

D, = sym(F,F; "), W, = skw(F,F;"). (3.8)

" Then the assumption that these measures depend only on the state variables results
in a class of flow rules, designated Class I.a, of the general form

Class La: sym(FpF;‘) = Dy(S), skw(F,,F;‘) =W,S). (39

Clearly, this class of flow rules is equivalent to Class I introduced above, with
®,=D,+W,, D, =sym®,, and W, = skw®,. In particular, for flow rules in

5 Actually, some restrictions may need to be imposed on these functions, depending on the choice of

D, and W,. For example, if D, is taken to be sym(F,,Fp‘ '), which is deviatoric, then we must have
tmp = 0.
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Class 1.a the plastic stress power depends only on the state variables. Since the con-
stitutive function W,=0 is not excluded, Class L.a includes flow rules for which

skw(/-',,F - 1) = 0 for all motions.

Note that for flow rules in Class L.a, the partitioning of the total rate of plastic slip
(as measured by the plastic velocity gradient) into a plastic strain rate and a plastic
spin is not absolutely necessary, since we can also express the plastic velocity gra-
dient directly as a function of the state variables, as in (3.3). On the other hand,
suppose we choose some measure W, for the preferred plastic spin other than
skw(FpF - l), but continue to take D, = sym(F oF l). Then it may not be obvious
how to combine D, and W, to form a tensor that measures the total rate of plastic
slip; for example, simply adding sym (F,,F ” 1) and W, may not make sense kinema-
tically. Thus the requirement that some measures for plastic strain rate and plastic
spin depend only on the state variables would seem to be less restrictive than
requiring that some measure for the total rate of plastic slip depends only on the
state variables. Of course, if a kinematic relation of the form (3.6) exists, then DD,
and W, do combine in some way to form the plastic velocity gradient, but if the

dependence of F,F,"' on F, in the kinematic relation (3.6) is nontrivial, then the
dependence of F,F ” I on F, will also be nontrivial in the flow rule (3.7), in which
case F,F o ! does not depend on the state variables alone for this class of flow rules.

When D, = sym (F oFy l) and W, is a measure for plastic spin other than
skw(F,,F » l), it is also necessary to check that the plastic stress power depends only
on the state variables. In this regard, observe that if C, and T commute, then C,T is

a symmetric tensor, so in the inner product (3.1) we may replace F of 5 I by its sym-
metric part:

prP;=C.T: sym(F,,Fp—‘), if CT=7cC. (3.10)

Although C, and T need not commute in general, they do commute if the material is
elastically isotropic, that is, if

T=T(E.,6,q, (3.11)

for some isotropic function T .6 Since C, and T are state variables, if we take D, =
sym(F,,F o 1) then the expression (3.10) for the plastic stress power and the con-
stitutive assumption D, = D,(S) imply that for an elastically isotropic material, the
plastic stress power depends only on the state variables S, regardless of the choice
for the plastic spin tensor W,

6 1t is easily shown that an equivalent relation in terms of the Cauchy stress is T = T (Ve. 0, gn) for
some isotropic function 7. This in turn is equivalent to the condition that T = 7(F.,¥6,q,) =
T(F.H,0, q,) for any rotation H.
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We close this section by motivating a different choice for D,. Recall that another
general expression for the plastic stress power is (Scheidler and Wright, 2001, Sec-

tion 4.8)
prPy = T: D, (3.12)
where the plastic strain rate tensor D, is defined by’

D, = sym (CerF;‘). | (3.13)

Since T'is a state variable, if we take D, = D, then the relation (3.12) for the plastic
stress power and the constitutive assumption D, = D,(S) imply that the plastic
stress power depends only on the state variables S, regardiess of the choice of the
plastic spin tensor W, in (3.4). Thus any flow rule of the form (3.4) with D, = D,
satisfies our first two criteria. However, the choice of the plastic spin tensor W, is
restricted by the third criterion, that is, W, must be such that a relation of the form
(3.6) holds with D, = D,,.

4. Classes I-1II: summary of results

In this section we consider six classes of flow rules of the form (3.4)—the different
classes being defined by different choices for D, and W,. For the preferred plastic

strain rate [), we consider the tensors sym (F,,F o 1) and D, discussed in Section 3.
For the preferred plastic spin W, we consider the tensors skw(F ofFp 1), W,,and Q,.
The plastic spin tensor W, » is defined by analogy with ﬁp:

W, = skw(CerFp" : 4.1)
The skew tensor £, is the commonly used measure of plastic spin defined by?®
Q,=R,R].

The six classes considered here are formed by taking all combinations of these three
measures of plastic spin and the two measures of plastic strain rate. These classes of

7 This measure of plastic strain rate has been considered by several other authors; sce Moran et
al.(1990), Armero and Simo (1993), Miche (1994), Maugin (1994), Maugin and Epstein (1998), and Cleja-
Tigoiu and Maugin (2000).

8 Note that since R, = FpU, ~! and U, = ‘/Fp7Fp, Q, = W,, (Fp, Fp) for some function WI,, so that
(3.5), is satisfied for W, = Q,,.
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Table 1

Classes of flow rules of the form D, = D,(S) and W, = W,(S5), where S denotes a list of state variables

Class D, W, Derived properties

La sym (F' of p ') skw(? oF ') Classes 1.a—1.d are equivalent to Class 1.

Lb b, v, Q, depends on V, and S.

Le sym(FpF,,") W,, skw(FpF;') = O%Wp =0, unless C, and sym(Fpr"')
commute.

Id D, skw(FpF . ') The plastic stress power depends only on S.

11 sym(FpF,;‘ ') Q, D,. skw(F,,Fp‘ '), and W, depend on V,, and S.

The plastic stress power depends on V, and S,

unless the material is elastically isotropic.

m D, Q, sym(f-',,Fp‘l), skw(F,,F;'), and W, depend on V, and S.

The plastic stress power depends only on S.

flow rules are listed in Table 1 along with some of their properties. The results in
Table 1 and elsewhere in this and the next two sections are valid for finite elastic
strains. Approximations for small elastic shear strains are discussed in Section 7.
Another class of flow rules is studied in Section 8.

Since sym(FpF » 1) is deviatoric, for Classes I.a, I.c, and 1I the flow function D,
must satisfy trD, = 0. Since tr(Ce‘ 1[),,) = 0, for Classes 1.b, I.d, and III the flow
function D, must satisfy tr(C, ' D,(S)) =

4.1. Equivalent classes of flow rules

Two classes of flow rules are said to be equivalent if every flow rule in one class can
be expressed as a flow rule in the other class and vice versa. In Section 3 we observed
that Class I.a is equivalent to Class I, as defined by (3.3). As indicated in Table 1,
Classes 1.b, I.c, and 1.d are also equivalent to Class I, and hence Classes I.a-1.d are
equivalent to each other. The “Derived Properties™ listed in the top portion of
Table 1 apply to all of the (equivalent) Classes I.a-1.d.

The equivalence of Classes I and Lb is easily established. From Table 1 we see that
Class 1.b is defined by choosing D, = D,, and W, = W in (3.4), resulting in flow
rules of the form

Class Lb: D, = D,(S), W, = Wy(S). (4.3)

On the other hand, for a flow rule in Class I we have F oF, ey »(S), so it follows
from the definitions (3.13) and (4.1) of D and W that these tensors depend only on
C., and the state variables S; and since C isa state variable, we see that (4.3) holds.
Therefore every flow rule in Class I belongs to Class I. b. Conversely, from the defi-
nitions (3.13) and (4.1) of Dp and W we see that
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Dp+ W, = C.F,F;", 4.4)

and therefore

Then for flow rules in Class Ib the constitutive relations (4.3) and the kinematic

identity (4.5) imply that F pF depends only on the state variables, which defines a
flow rule in Class 1. Thus Class I.b and Class I are equivalent. The proof that Classes
I.c and 1.d are equivalent to Class I is less straightforward and is given in Section 5.

4.2. Mutually exclusive classes of flow rules

From Table 1 we see that the classes of flow rules labeled II and III are char-
acterized as follows:

Class 1I: sym(f'-'pl-'; 1) = Dy(S), Q, = Wy(S), (4.6)

Class III: D, = Dy(S), Q, = Wy(S). 4.7

In particular, for both classes the plastic spin tensor £, depends only on the state

variables.
We say that two classes of flow rules are mutually exclusive if they have no flow

rules in common. In Section 6 we will prove that Classes I, II, and III are mutually
exclusive. The details of the proof depend on the particular classes being compared,
but the essential ideas are the same in each case. First, we show that there is a gen-

eral kinematic relation of the form

Q, =G, (sym(F,F;"), skw(F,oF;1). Vo), (4.8)
where the dependence on the left plastic stretch tensor V), = ,/F,F is nontrivial. For
flow rules in Class I, sym(F oF 1) and skw(f-' oF 5 1) depend only on the state vari-

ables S, in which case (4.8) implies that the plastic spin tensor £, necessarily
depends not only on the state variables but also on V). Since, by assumption, V,, is
not a state variable, such a flow rule does not belong to Classes II or III. Thus
Classes I and II are mutually exclusive, as are Classes I and III. Next, we show that
there is a general kinematic relation of the form

By, = Dy (sym(FoF; ). @, C., Al 4.9)

where the dependence on the V, is nontrivial. For flow rules in Class II,
sym(F,,F N 1) and ©, depend only on the state variables S, in which case (4.9)




M. Scheidler, T.W. Wright | International Journal of Plasticity 19 (2003) 11 19-1165 1133

implies that the plastic strain rate tensor ﬁp depends on V, as well as the state
variables. By (4.7), such a flow rule does not belong to Class III. Therefore Classes II
and III are mutually exclusive.

In Section 6 we also show that for flow rules in Class II, the preferred measures of
plastic spin for Class I, namely skw (F oFp 1) and W,,, depend on V,, as well as the
state variables S. For flow rules in Class III, we show that the plastic spin tensors
skw (F oFp 1) and Wp, as well as the preferred measure of plastic strain rate for Class
II, namely sym (F oF 5 1), depend on V, and the state variables S

From (4.6); and the results in the previous paragraph, we see that for any flow
rule in Classes II or III, sym (F oF 1) and skw (F oF 5 1) depend at most on the state
variables S and the plastic stretch V,.. And since FpF ;' = sym (f-' oF ') + skw (/—” oF; 1) :
it follows that flow rules in Classes IT and III can be expressed in the form

Fofit = 6,(5.0) @10

for some function ® p- This implies that the flow rules in Classes II and III satisfy
the third criterion in Section 3. Indeed, since Fp = VpR,, (4.10) is the special case of
(3.2) with no dependence on the rotational part R, of Fp. Of course, flow rules in
Class I are special cases of (4.10) with no dependence on V),

Note that while every flow rule in Classes I-1II can be expressed in the form
(4.10), not every relation of the form (4.10) yields a flow rule in one of these classes.
For flow rules in Class II, sym®, depends only on the state variables S, and while
skw® , depends nontrivially on V., it does so in such a way that ©, is independent
of V,; the explicit form of this dependence is discussed in Section 6. For flow rules
in Class III, both sym®, and skw®, depend nontrivially on V,,, but again this
dependence is not arbitrary since D, and £, must be independent of V.

4.3. Flow rules with null plastic spin

For flow rules in Classes II and III, the evolution equation for the plastic rotation
R, has the form R,,R; = Q, = W,(S). In particular, the spin function W, may be
chosen to be identically zero, in which case Q,=0, which is equivalent to R, = 0.
Since we assume that F, is initially equal to the identity tensor I, we also have R, =1

initially. Therefore,
Q,=0 iff R,=1 iff Fp=Up=V,. 4.11)
Classes I and III include as a special case flow rules for which the plastic spin tensor

Q, is identically 0 for all motions, and for such flow rules there is no plastic rotation
(as measured by R,), and £, is a pure stretch.

9 The proof of the results for Class III is more difficult and is given in Appendix B3.
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Class I includes flow rules for which skw(FpF o 1) is identically 0 for all motions
and also flow rules for which W, is identically 0 for all motions. These two sub-
classes do not coincide in general. For a flow rule in Class I with skw (F oFy ') =0,
the spin tensor W, will generally be nonzero, although it necessarily depends only on
the state S since Classes I.a-1.d are equivalent. Similarly, for a flow rule in Class I
with W, = 0, the spin tensor skw(Fpr‘ 1) will generally be a nonzero function of

the state S. The conditions skw(F ofFy 1) = 0 and W, = 0 are equivalent at some

instant iff C, and sym(F of o 1) commute at that instant (see Section 5).

Given that Classes I, IL, and III are mutually exclusive, it is easy to show that
there are no flow rules in Class I for which Q, is identically 0 for all motions and
that there are no flow rules in Classes II and III for which either skw(F oF 5 1) or W,
is identically 0 for all motions. Since sym(F ofFp l) = D,(S) for flow rules in Class I,
a flow rule in that class for which Q,=0 would satisfy the conditions
sym(Fpr‘ ') = D,(S) and Q, = 0. But by (4.6), this is a flow rule in Class II with
W,(S) = 0, contrary to the fact that Classes I and II are mutually exclusive. Thus,
there are no flow rules in Class I for which Q, is identically 0 for all motions;
equivalently, there are no flow rules in Class I for which F, = U, =V, for all
motions. Similarly, since sym(FpF > 1) = D,(S) for flow rules in Class II and ﬁ,, =
D,(S) for flow rules in Class III, we see from (3.4) and Table 1 that a flow rule in
Class II or III for which either skw(f-' oFp 1) or W, is identically 0 for all motions
would also be a flow rule in one of the (equivalent) Classes I.a-1.d with W,(S) =0,
contrary to the fact that Classes I and II and Classes I and III are mutually exclusive.

4.4. The plastic stress power

In Section 3 we observed that for flow rules in Class I, the plastic stress power
depends only on the state variables S. Therefore, this property holds for each of the
(equivalent) Classes I.a—1.d. We also observed that this property holds for any flow
rule for which D, depends only on the state variables. In particular, it holds for all
flow rules in Class III. Finally, we noted that if the material is elastically isotropic,
then the plastic stress power depends only on the state variables for any flow rule for

which sym (F oFp 1) depends only on the state variables. In particular, for elastically

isotropic materials the plastic stress power depends only on the state variables for all

flow rules in Class II.
For flow rules in Class II and materials that are not elastically isotropic, the

plastic stress power will generally depend on the plastic stretch V, as well as the state
variables S. To see this, note that if the tensors C, 7 and F oF > Lare decomposed into
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their symmetric and skew parts, then the expression (3.1) for the plastic stress power
becomes

R P = sym(Ce T) : sym(/i',,F;‘) + skw(Ce T) : skw(/i‘,,F;'). (4.12)

For flow rules in Class II, sym(F,,F o 1) depends only on the state variables, and
since C, and T are state variables, the first group of terms on the right depends only
on the state variables. However, as noted above, for flow rules in Class II the plastic

spin skw(f-',,Fp’ l) depends on V, as well as the state variables. If skw(CeT) #0
(equivalently, if C, and T do not commute), as is generally the case, then
skw(F,,F s ‘) will generally make a nonzero contribution to the the plastic stress
power, and thus the plastic stress power will generally depend on the plastic stretch
V,, as well as the state variables.

4.5. Generalized plastic strain rate tensors

Generalized elastic strain tensors Ef their conjugate stress tensors T ", and the
plastic strain rate tensors Df conjugate to T/ were discussed by Scheidler and Wright
(2001, Section 4.10). Followmg Hill (1978),1° a smooth real-valued function f
defined on the positive reals and satisfying the conditions f(1)=0, f° ’(1)*1 and
f'>0 may be regarded as a scalar strain measure. The elastic strain tensor E cor-
responding to the strain measure fis the symmetric tensor that is coaxial with U but
with corresponding eigenvalues f(4), where 4] are the eigenvalues of UL, i.e., the
principal elastic stretches. The stress tensor T r conjugate to Ef satisfies the require-
ment that Ty: E; is the elastic stress power per unit volume in the intermediate
configuration; equ1valently, Tr: T E = T: E,. The plastic strain rate tensor Df
conjugate to 7, s satisfies the requirement that T Df, is the pluglic stress power per
unit volume in the mtermedlate configuration; equlvalently, T I D’ =T: D 1 In parti-
cular, when f(A) = 3 L (3 —1), we have E/ = E,, Ty =T, and D’ D,.

Instead of assuming that D, = (S) as in Classes III, I.b and I.d, we could con-
sider flow rules for which

10 See also Ogden (1984) and Scheidler (1991). All of these authors considered total strain tensors rather
than their elastic part as considered here, but the ideas are essentially the same in either case.

11 The stress tensor T conjugate to E/ is given by 7y = !Fu[ ] IUAR [sym(U T)] where the
fourth order tensor Df(U,) is the derivative of the function f(U,) whose value is E/. Then D] = Fy! [ﬁp],

and it can be shown that lF{," = 2Df(U )Ly, = 2Ly, Df(U,), where the fourth-order tensor Ly, is defined in
Appendix A. Except for the special cases corresponding to f(A) = ;};(A.’" — 1) with m an integer, explicit
component-free formulas for the above results are rather complicated. In general, it is simpler to express
these results in component form relative to a principal basis for U,. Component formulas for Df(U,) can
be found in Ogden (1984, p. 162), and Scheidler (1991). A component formula for Ly, follows from Eq.
(A.2) in Appendix A.
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D! =DI(S), where  Sy=(EL0, qn Ax) or (Tf, 6, qn,Ak)- (4.13)

However, as observed in Scheidler and Wright (2001, Section 5.1), a relation of the
form (4.13) is equivalent to a relation of the form D, = D,(S), so (4.13) does not
lead to anything new as far as the classifications in this section are concerned. In
particular, Class III and the equivalent Classes I.b and I.d remain unchanged if the

relation D, = D,(S) is replaced by (4.13).
4.6. Isotropic materials with only scalar internal variables

For an isotropic material with only scalar internal variables, the flow functions D,
and W, in the flow rule (3.4) are isotropic functions of the state S, which in this case
contains only one tensor state variable, e.g.,

S=(E,0,qs) or (T,e,q,,). (4.14)

Since the values of an isotropic tensor-valued function of a single symmetric tensor
(and an arbitrary number of scalars) are necessarily symmetric, and since W, is
skew-valued by assumption, it follows that the function W, is identically zero in this
case.!? Thus, for an isotropic material with only scalar internal variables,

skw(FpF; 1) and W, are identically zero for flow rules in Class I, whereas Q,
is identically zero for flow rules in Classes II and IIL:

Class I: sym(F',,F;') = D,(S), skw(F,,F;‘) =0, (4.15)
Class II: sym(F,,F;‘) =D,S), Q,=0, (4.16)
Class III: D,=D,S8), 9,=0. 4.17)

Even for this special case, Classes I, II, and III are mutually exclusive. In particular,
R, =1and F, = U, =V, for flow rules in Classes II and III [see (4.11)]. However,
for flow rules in Class I, R, is generally not fixed and depends (in part) on the history

of V,, since Q, is generally nonzero and depends on V),
In spite of these differences in the evolution of the intermediate configuration, it

can be shown that for isotropic materials with only scalar internal variables, the flow
rules (4.15) and (4.16) characterizing Classes I and II, respectively, produce the same
Cauchy stress for a given flow function D,, other things being equal.!® This is gen-
erally not the case if the material is anisotropic or if tensor internal variables are
included. This issue and others related to material symmetry will be addressed in a

follow-up paper.

12 This argument is well-known; for example, see Kratochvil (1973), who applied it to flow rules in our

Class 1.
13 See the Appendix in Boyce et al. (1989), with their back stress B set to zero.
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5. Equivalence of Classes La, L.c, and Ld

As indicated in Table 1, the Classes I.a—1.d are equivalent to Class I [as defined by
(3.3)], and hence they are equivalent to each other. We have already established the
equivalence of Classes I, I.a, and I.b (see Sections 3.3 and 4.1). In this section we
show that Classes I.a, I.c, and I.d are equivalent. At the end of the section we discuss
the contribution of the plastic spin to the plastic stress power for flow rules in Class I.

J.1. Proof that Class La is contained in Classes I.c and I.d

The plastic strain rate tensor 5,, and plastic spin tensor WP are given by

D, = sym (CeF,,F,, “) = % [ce (Fp/-';l) -+ (F,,F;‘)TC,,] (.1)
and
W, = skw(CoFoF ;") = % [Ce(FpF;l) - (F,,F;‘)Tce]. (5.2)

If we expand F,,F o ! into symmetric and skew parts in (5.1), and (5.2),, we obtain
the relations

20, = Csym(Fof ;") + sym(FF; ) Co+ Cuskw(FoF ;)

B SkW(FpF;l)Ce (5.3)
and
2W, = Casym(F o) — sym(FoF ;" )C.+ Caskow(£ ;)
+skw(F,F;')C.. 64

For a flow rule in Class L.a, sym (F' oFp ') and skw(F ofFp l) depend only on the state

variables, and thus, by (5.3)-(5.4), so do 5,, and W,,, since C, is a state variable. It
follows that a flow rule in Class I.a is also in Classes I.c and I.d, as defined in
Table 1. The same conclusion also follows from (5.1)-(5.2) and (3.3).

5.2. Proof that Classes I.c and 1.d are contained in Class L.a

To prove the reverse implications, we solve (5.3) for sym(Fpr" ') and (5.4) for
skw(F ofF 5 '). The results may be expressed as

sym(FpF;’) =2l [ﬁp] ~ Me, [skw(F,,F;l)], (5.5
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S - .
skw(£oF, ') =2Lc,[W,| - M, [sym(£27,1)] (5.6)

The derivation of these solutions is given in Appendix B1. The symbols L¢, and M,
denote certain fourth-order tensors that depend (nonlinearly) on C,. More generally,
for any second-order, symmetric positive-definite tensor 4, the symbols L4 and M,
denote certain fourth-order tensors that depend (nonlinearly) on 4.4 The defini-
tions of L4, and M, are given in Appendix A, along with a discussion of some of
their properties. Although the only case of interest in this section is 4= C,, the case
A=V, arises in the next section. For a given 4, the fourth-order tensors I, and M 4
are regarded as linear transformations on the space of second-order tensors. The
image of a second-order tensor H under the mapping M 4, for example, is a second-
order tensor denoted by M [H]. Explicit formulas for M 4H] and L ,[H] are also
given in Appendix A. These formulas yield explicit expressions for the kinematic

relations (5.5) and (5.6).
Here we are concerned primarily with the qualitative properties of L4 and M 4. We

note that L 4 maps symmetric tensors to symmetric tensors and skew tensors to skew
tensors, whereas M 4 maps skew tensors to symmetric tensors and symmetric tensors
to skew tensors. Thus, each of the two groups of terms on the right side of (5.5) is
symmetric, whereas each of the two groups of terms on the right side of (5.6) is skew.

For a flow rule in Class I.c, sym (F ofFp 1) and W,, depend only on the state S (by
assumption), and thus, by (5.6), so does skw(F,,Fp' 1). That is, both sym(FpF p I)
and skw(FpF N ') depend only on S, so the flow rule is in Class I.a. Similarly, for a
flow rule in Class I1.d, 5,, and skw(f-' ofp ') depend only on S (by assumption), and
thus by (5.5) so does sym (/-' oFp 1), so again the flow rule is in Class I.a. Therefore,

the classes of flow rules I.a, I.c, and 1.d are equivalent.

5.3. Further remarks on the preferred plastic spins for flow rules in Class I

From (5.4) it follows that the condition skw(F" of 5 1) = 0 does not imply ¥, =0,
in general. Similarly, from (5.6) it follows that the condition W,, = 0 does not imply
skw(F oFy 1) = 0, in general. On the other hand, from (5.4) we see that

skw(F,,Fp") =0 W,=0, if sym(FpF;‘) and C, commute.  (5.7)

This result may also be obtained from (5.6), since ILC,[W,,] =0 iff W,, =0, and
Mc, [sym (F,,F b ’)] =0 iff C,and sym(f’,,F o 1) commute (see Appendix A).

14 In this context the tensor A is unrelated to the tensor internal variables Ap.
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Recall that Class I can be characterized by flow rules of the form D, = D,(S) and
W, = W,(S) with cither D, = sym (FoF;") and W, = skw(FF, ') (Class 1a), or
D, =D, and W, = W, (Class Lb). Then the relations (4.12) and (3.12) for the
plastic stress power might suggest that for flow rules in Class I, skw(FpF s ]) gen-
erally contributes to the plastic stress power whereas W, does not. Actually, this
conclusion is not correct without some qualification. The correct interpretation is
that 5,, and T completely determine the plastic stress power, whereas sym (F oF 5 ‘)
and T (or even sym(F oFy 1), T, and C.) generally do not, so that if D, =
sym (F ofFp l) then the the additional contribution to the plastic stress power must be
provided by the preferred spin W,. For example, from Table 1 we see that Class I is
also characterized by D, = sym (F,,F o l) and W, = W, (Class I.c). Then (4.12) and
the formula (5.6) for skw(f-',,F 5 1) in terms of W,, and sym(/: of 5 1) imply that the
plastic stress power can be expressed in terms of sym (F oF 1), W,, C., and T: in parti-
cular, W, generally makes a nonzero contribution to this expression. On the other
hand, from Table 1 we see that Class I is also characterized by D, = D, and W, =
skw(F,,F » 1) (Class 1.d); and by (3.12), skW(F oFp ') makes no contribution to the
expression T : D, for the plastic stress power.

6. Proof that Classes 1, II, and III are mutually exclusive

In this section we prove that Classes I, II, and III are mutually exclusive. The
proof is based on a fundamental kinematic identity that relates the plastic spin tensors

Q, and skw(F',,F N 1), the plastic strain rate tensor sym (F’,,F o ]), and the plastic
stretch tensor Vp:

skw(£oF5 ) — @, =My, [sym(£oF;") | (6.1)

In particular, (6.1) implies that €, is a function of sym (F oF 5 1), skw(F' oFy 1), and
V,, as alluded to in (4.8). Recall that My, is a fourth-order tensor depending (non-
linearly) on V,, as defined in Appendix A, and that My, maps symmetric tensors to
skew tensors, so that the right-hand side of (6.1) is indeed a skew tensor as required.

6.1. Derivation of the kinematic relation (6.1)

There are several ways to arrive at the identity (6.1). The method we use here is
based on the following two properties (see Appendix A). First, M4[H] is an isotropic
function of 4 and H:
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OM4[H]Q" =My, [QHQ] (6.2)
for any orthogonal tensor Q. Second, for any symmetric tensor B,
skw(BA™') = M,4[sym(B47")]. (6.3)

In particular, the skew part of BA~! is determined by 4 and the symmetric part of
BA~!. Recall that A4 is assumed to be symmetric and positive-definite. _

From the polar decomposition £, = R,U, and the definition ©, = R,R], we
obtain the kinematic relation ‘

FoF;' =R, (U,,up—l) R +Q, (6.4)
On taking the symmetric and skew parts of this relation, we obtain

sym(£,F;") = Rysym(UpU; )Ry, 6.5)

skw (F,,F,;') - Rpskw(UpU;‘)R; +9Q,. (6.6)

By setting B = U,, and 4 = U, in the algebraic identity (6.3), we obtain a compat-
ibility condition for skw(Up u, 1) due to Nemat-Nasser (1990, 1992),15

skw(U,,Up"') =My, [sym(UpUp‘l)]. (6.7)

On substituting this relation into (6.6) and then using (6.2) with 4 = U, and
0O = R,, we obtain

skw(FpF, ") = R, = Ryskw(U,U; )R]

- RPIM]U,,[sym(l./,,,U‘;,‘l ]R;

_ 4 11-\pT

=My, 7| Rpsym (UU; ") RT .
On using R,U,R! =V, and the relation (6.5) in the bottom expression, we obtain
(6.1). An alternate derivation of (6.1) is given in Appendix B2.

Explicit formulas for M [H] are given in Appendix A. On setting A=V, and
H= sym(/: oFp ') in the formulas (A.5) and (A.17) for M 4[H] and then substituting
the results into (6.1) above, we can obtain explicit formulas for the difference
skw(F'pF o 1) — Q, in terms of sym(f-',,F,‘,‘ 1) and V,,. For the discussion in this sec-

tion, only the qualitative properties of My, are needed.

15 For the special case where F, = U, = V,,, (6.7) was also obtained by Obata et al. (1990).
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6.2. Proof that Classes I-I1I are mutually exclusive
For flow rules in Class I or Class II, we have sym (F oFp 1) = D,(S), so that by (6.1),
Classes 1 & I skw(£,F,") - @, = My, [Dy(S)] (6.8)

Hence, for flow rules in Class I or Class II, the difference sym (F oF 1) — Q, depends

not only on the state variables S but also on the left plastic stretch tensor V), This
dependence on V,, is nontrivial. Indeed, as discussed in Appendix A, for a given tensor

H the tensor My [H] is independent of the value of V), iff H is spherical, in which case
My, [H] = 0. Since Dy(S) = sym (F oFy 1) is deviatoric, it is spherical iff it is zero.
Since the difference skw(F,F o 1) — Q, depends on V, as well as the state vari-
ables, it follows that £, must depend on V,, as well as the state variables for a flow
rule in Class I, since skw(FpF 5 1) depends only on the state variables. Such a flow

rule does not belong to Classes II or III since, by assumption, £, depends only on
the state variables for flow rules in these classes. Thus Classes I and II are mutually

exclusive, as are Classes I and III. ‘
When the kinematic relation (6.1) is solved for skw(F,,F o 1) and the result is

substituted into the relations (5.3)(5.4), we obtain kinematic relations of the form
Dp = ﬁ;(syn‘l(Fpr—l)’ QP’ Ce’ Vp),
W, =W, (sym(F,,F;‘), Q,,C., V),

where the dependence on V,, is nontrivial. Now consider a flow rule in Class II. By
assumption, sym (F of 5 ') and Q, depend only on the state variables. Then by (6.9)
we see that D, and W, also depend on V,, as well as the state variables. In particular,
since D,, depends on V,, the flow rule cannot belong to Class III. Thus Classes II
and III are mutually exclusive. Also note that by (6.8), skw(F oF ’) depends on V,
as well as the state variables for flow rules in Class II.

Since F,,F; I = sym(f-'pr" ]) +skw(I:'pF; 1), the kinematic relation (6.1) implies
that

(6.9)

FoF, ' = sym(FpF,,“) + My, [sym(F,,F;‘)] +Q,. (6.10)

This kinematic relation expresses the plastic velocity gradient in terms of V,, and the
preferred measures for plastic strain rate and plastic spin for flow rules in Class II.
Since these measures are functions of the state variables S for flow rules in this class,

it follows that F,F;" = @ ,(S, V,) for flow rules in Class II as claimed in Section

4.2, and hence that the third criterion in Section 3 is satisfied. The analogous result
for flow rules in Class III is more difficult to establish; the proof is given in Appendix
B3.
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6.3. Further remarks on the plastic spin tensors skw (F ofp 1) and »

As discussed in Section 4.3, Classes II and III contain a subclass of flow rules for
which Q, = 0. The above results imply that there are no such flow rules in Class L.
Indeed, if a flow rule in Class I satisfied £, =0, then by (6.8) we would have

skw(FpF o ? = My, [D,(85)] for all motions, contrary to the fact that skw(FpF; ’)
depends only on the state variables for flow rules in Class I.

Since M 4[H]=0 iff A and H commute (see Appendix A), the kinematic identity
(6.1) implies that

skw(FoF; 1) = @, = Vosym(FoF ;') = sym(Fof " )V (6.11)

In other words, the plastic spin tensors skw(F oF, ') and Q, coincide at an instant
iff sym(F oFy 1) and V, commute at that instant. If the relation skw(FpF ” ‘) =Q,
were required to hold for all possible motions of a material, then sym(F ofFp l)
would have to commute with V, at every instant, which implies a dependence of
sym(F oF 5 1) on V,. For flow rules in Classes I or II, such dependence is not per-
mitted, by assumption. Thus there are no flow rules in Classes I or II for which

skw(F,F, ') = Q, for all motions.
We close this section by establishing some bounds on the plastic spin tensors

skw(FoF 5 ') and Q, that will be used in the next section. The norm of a tensor H is
the scalar ||H|| > 0 defined by

3
IH|*= tr(H'H) = ) _H, (6.12)

i,j=1

where the components H;; of H are taken relative to any orthonormal basis. Since
”Mvp [sym(ﬁ,,F;‘)]" < l(sym(F,,Fp“)”, [see (A.7)], the identity (6.1) yields the
inequalities

uskw(ﬁ,,/-',;‘)-n,," < sym(F‘,,F,;’) , (6.13)
”skw(Fpr“l)" <[, + sym(F,,F;‘) : (6.14)
|21 < [skw(£oF,")] + |sym(£oF51) |- (6.15)

Observe that unlike (6.1), these inequalities are independent of the plastic stretch V,.




M. Scheidler, T.W. Wright | International Journal of Plasticity 19 (2003) 1119-1165 1143
7. Approximations for small elastic shear strains

The results discussed up to this point and summarized in Table 1 are valid for
arbitrary finite elastic deformations. Large elastic rotations cannot be ruled out since
a superposed rigid motion is regarded as part of the elastic deformation only
(Scheidler and Wright, 2001, Section 3.2). Also, high pressures, such as those gen-
erated by ballistic impact, result in large elastic volumetric strains, and it is known
that polymers may sustain large elastic shear strains.!® On the other hand, the elastic
shear strains that can be sustained by metals are relatively small. In this section we
discuss the validity of certain approximations for the plastic strain rate and plastic
spin under the assumption that the elastic shear strains are small.

7.1. Measures of elastic shear strain

The elastic deformation gradient F, can be decomposed into a dilatational part,
(detFe)I/ 3. and an isochoric part F,,

1/3
F. = (detF,)\*F, = (-‘%R) Fe, detF, = 1. (7.1)

Similarly, the elastic stretch tensors can be decomposed into dilatational and iso-
choric parts,

1/3 1/3
U, = (f’pﬂ) U, V, = (%‘1) Ve, detU =detVo =1.  (7.2)

Then F, has the polar decomposition

Fe=RU,=VeR,, (7.3)

and
0 2/3
C.= (—l-?-) - Ce, Ce= FeTFe = Uf, detC. = 1. (7.4)

The symmetric positive-definite tensors U, and V, are independent of the dilatational
and rotational parts of F, and thus are measures of elastic distortion only. It follows
that U,—1I and V.—I can be regarded as tensor measures of elastic shear strain. The
scalar ||Ue — I|| = ||Ve — I|| measures the magnitude of the elastic shear strain, inde-
pendent of the elastic volumetric strain and the elastic rotation. Likewise, the tensor

16 In this regard, see the recent paper by Srinivasa (2001) in which the effect of large elastic shear strains
on plastic flow in simple shear is studied.
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1 1 ,
Ee=§(Ce_1)=(ue-l)+'2‘(ue_1) (7.5)

and the scalar ||E,|| may be regarded as measures of elastic shear strain.!”

7.2. Approximations for small elastic shear strains

Plastic flow in metals limits the magnitude of the elastic shear strain so that
[[Ue — I|| is small compared to unity. Then [|[Ue — 1)? is small compared to [[Ue — 1],
and so on. By an approximation for small elastic shear strains we mean any
approximation obtained by neglecting these relatively small terms. For example,
since we may neglect the term U, — I relative to I for small elastic shear strains, and

since U, = I+ (U, — I), on using (7.2), we obtain the approximations
or) 3
U.H~ HU, ~ (7“) H (7.6)

for any tensor H.
From (7.5) we see that ||E.]| is small compared to unity iff |Ue — || is small com-

pared to unity. Since we may neglect the term £, relative to I for small elastic shear
strains, and since

Ce = I+ 2Ee, (7.7)

from (7.4); we obtain the approximations

0 2/3
C.H~ HC, ~ (-pﬁ) H (7.8)

for any tensor H. On multiplying (7.7) by C, ! on the left or the right, we obtain the
approximations

or\
C.'H~ HC;' ~ (.;) H (7.9)

for any tensor H.
By setting H = FpF ! in (7.8), we obtain the approximation

. pR 2/3 .
CFof)' ~ (_;) FoF,! (7.10)

17 1f |E. |l is sufficiently small and if, for example, the material is elastically isotropic, then devT =~ 2uE,,
where devT denotes the deviatoric part of T and p is the elastic shear modulus. However, even though the
elastic shear strains may be small, u cannot be assumed constant as in the linear theory of elasticity. The
elastic shear modulus generally depends on both the temperature and the pressure. Constitutive relations

for this dependence are discussed in the recent paper by Hanim and Ahzi (2001).
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for small elastic shear strains. Now by (4.4) we have C.F oF p I = 5,, + Wp. On sub-
stituting this result into the left side of (7.10), we obtain the approximation

et~ (22) 6, + ) (7.11)

for small elastic shear strains. This also follows from the relation (4.5) for F ,,F by
setting H = Dp 4 W in the approximate formula (7.9).

Next, we give two typlcal (but erroneous) arguments that apparently lead to the
approximations

_ PN . ) or\ 2 _—
D, ~ (_;) sym(Fpr ) W, ~ (_p_) skw(Fpr ) (7.12)

for small elastic shear strains. First, since 5,, = sym (CJ’ ofFp l) and
W,, = skw(CeF oF, 1), it seems reasonable to conclude that the approximations
(7.12) follow by taking the symmetric and skew parts of the approximate relation
(7.10) for CerF o 1. Alternatively, the approximations (7.12) would also seem to
follow by taking symmetric and skew parts of the approximate relation (7.11) for

F pF . However, as shown in the next subsection, the assumption of small elastic
shear strains is not, by itself, sufficient for the validity of the approximations (7.12). In
the next subsection we will derive correct approximations for D, and W and from
these determine additional restrictions that suffice for the vahdlty of the simpler
approximations (7.12).

The importance of the approximation (7.12); stems from the following observa-
tion. Suppose the material is such that the approximation (7.12); for Dp is valid

whenever the elastic shear strains are small. In this case we see that if sym (F oF 5 )
depends only on the state variables S then, approximately, so does D,, since
(or/P)**= (detC,)'”? is a state variable. Likewise, if D, depends only on the state
variables then, approximately, so does sym(F of '). It follows that for small elastic

shear strains, Classes II and I1I may be regarded as approximately equivalent provided
the approximation (7.12) is valid. In view of this result and the fact that Classes II
and III are mutually exclusive for finite elastic deformations, it is of some interest to
establish the conditions under which the approximation (7.12); for 15,, does hold. As
noted above, the assumption of small elastic shear strains is not sufficient by itself.
Note that the approximate equivalence of Classes II and III does not extend to
Class 1. For small elastic shear strains, Class I still has no flow rules in common with
Classes II and III, even when the approximation (7.12); for D, is valid. This is due
to the fact that the kinematic identity (6.1) does not involve the elastic strain and
thus does not simplify for small elastic shear strains, so that the difference between

skw(F oF 1) and €, still depends on V,,.
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7.3. Correct approximations for 5,, and Wp

Before deriving the correct approximations for ﬁp and Wp, we give a simple geo-
metric explanation for the failure of the approximations (7.12). Consider a vector
space Y and two vectors u and v that are approximately equal. Let #* and v* denote
the projections of u and v onto a subspace Y* of Y that is nearly orthogonal to u.
For the case illustrated in Fig. 1, the length of »* is twice that of #*. Thus, even if the
relative error in approximating u by v is small, the relative error in approximating
the projection of u by the projection of v may be large. Now let ¥ be the vector space
of second-order tensors, and let ¥* be the subspace Sym of symmetric tensors. If we

take u = (pR/p)mI;",,Fp~ and v=C FpF I then w* = (pR/p)2/3sym(F,,F;1) and
V= sym(CeF ofF, 1) = D,, are the projections of # and » onto the subspace Y*. By
(7.10), u and v are approximately equal for small elastic shear strains. But from the
above discussion we see that the relative error in approximating u* by v* may be
large. In other words, the approximation (7. 12)1 for D, is not valid in general. This
approximation fails when the pI‘O_]CCtlon of F,F - ! onto the orthogonal complement
of Sym, namely the skew part of F F, ', is sufficiently large relative to the symmetric

part. Similarly, by taking Y* to be the subspace of skew tensors, we see that the
approximation (7.12), for W fails when the symmetric part of F F is sufficiently

large relative to the skew part
Assuming only small elastic shear strains, the correct approximations for D and

W are

b, ~ (B;R)zﬂ[sym(ﬁpF;l) + Eskw(F,Fy ") - skw(£oF )Ee] (7.13)

W, ~ (Epﬂ)m[skw(ﬁpr") +Eesym(Fpr"]) - sym(F,,Fp“')Ee]. (7.14)

To obtain (7.13), first note that by (7.4); and (7.7), we have C. = (or/p0)*"*I + 2E,).
When this is substituted into the expression (5.3) for D,, we obtain the expres-
sion on the right-hand side of (7.13) plus an additional expression (inside the
brackets) which is relatively small. Indeed, the omitted expression is

Eesym(Fpr”') + sym(f-'pF;‘)Ee. Since

|EeH £+ HE,|| < 2||E.||- | H|| (7.15)
E,.. sym(f-'pF;l)lI. For
small elastic shear strains, this is small relative to the term sym(F of 5 1) in (7.13),

and the approximation (7.13) follows. The approximation (7.14) is derived similarly,
starting from the expression (5.4) for W,.

for any tensor H, the omitted expression is bounded by 2
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Now it is certainly true that (7.13) and (7.14) yield the approximations (7.12) in
the limit as £, approaches 0. In other words, for any given values of sym(F ofF, 1)

and skw/(F oF 5 1), the approximations (7.12) hold for sufficiently small values of £,.
However, we are not free to make the elastic shear strain tensor £, as small as
desired. For a given material model, the values taken on by £, are determined by the
stress—temperature or strain—-temperature history. And while ||£,|| may be small com-

pared to unity, skw (F oF ') could be sufficiently large relative to sym (F oFy 1) that the

term Eeskw(FpF;l) ~ skw(Fpr'l)Ee in (7.13) is of the same order as sym(Fpr”‘),
in which case the simpler approximation (7.12), for 5,, would not be valid. In this
case Classes II and III are not approximately equivalent for small elastic shear
strains. This follows from (7.13) and the fact that skw(F' oF, 1) depends on V, as

well as the state variables for flow rules in Class II (see Section 6.2).
On the other hand, there would seem to be no physical basis for plastic spin

unaccompanied by changes in plastic strain, so it is not unreasonable to expect that
the plastic spin skw(F oF 5 1) is bounded by the plastic strain rate sym(FpF ” '), in
the sense that

|| skw(/l',,F;‘) || <o || sym (F',,F,;‘) || (7.16)

for some constant «;. If such a bound holds, then by (7.15) with H = skw (F oF 1),
we have

< 201 || Eell-

'sym(FpF,;‘l)ll. (1.17)

Eeskw(FpF;l) - skw(F,,Fp'l)Ee

If the constant «; in (7.16) is sufficiently small, say on the order of unity, then the
left-hand side of (7.17), and hence HEeskw (F,,Fp") — skw (FPF;‘)E,, , will be small
relative to “ sym (F ofFp l) “ whenever ||E¢| is small relative to unity, that is: for small
elastic shear strains. In this case the simpler approximation (7.12); for D, follows

from (7.13).

Regarding the approximation (7.14) for W,,, we see that if sym (f—' ofFp ') is sufficiently
large relative to skw(FpF N 1), then the term Eesym(F oFy ‘) — sym (F,,F - ’)Ee could
be as large or larger than skw (F oFy ') , in which case the simpler approximation (7.12),
for Wp would not be valid. Note that the bound (7.16) does not rule out this possibility.

On the other hand, suppose there is a constant 8, such that

sym(£,£,1) | < i]siow(£075) |- (7.18)
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u v

* v* Y*

Fig. 1. Projection of two approximately equal vectors  and » onto a subspace Y* of the vector space Y.
Arguing as above, we see that if g, is sufficiently small then the simpler approxima-
tion (7.12), for W, would follow from (7.14).
7.4. Approximations for sym (FPF Py l) and skw(f-',,F b l)

The approximations (7.13) and (7.14) for 5,, and W,, in terms of sym (F,,F o ') and
skw(F,,F ) yield approximations for sym(l:',,F,;‘ l) and skw(F,,Fp‘ l) in terms of
D, and W)

sym(FoF,") ~ (’2‘)_2/3(5,, — EW, + WyE. ), (7.19)
and
-2/3
skw(i-',,/-‘,;‘) ~ (%)"l) ( W, — ED, + [),,Ee>. (7.20)

To obtain (7.19), solve (7.13) for sym(f-' F, ~1) and (7.14) for skw(F F ") and then
substitute the second of these relations into the first. The result is (7.19) plus some

terms of order sym(F Fo )" which are negligible relative to " sym (Fp )"

for small elastic shear strains. The derivation of (7.20) is similar.
If there is a constant &; such that

|7,] <& |5, (7.21)
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then on using (7.19) and arguing as in Section 7.3, _we see that for small elastic
shear strains the simpler approximation (7.12), for Dp is valid provided the con-
stant @ is sufficiently small, say on the order of unity. Similarly, if there is a con-
stant B; such that

Hﬁf’“ <A “ W,,“, : (1.22)

then on using (7. 20) we see that for small elastic shear strains the simpler approx-

imation (7.12), for W is valid provided the constant /91 is sufficiently small.
Although bounds on the plastic strain rate of the form (7.22) or (7.18) might hold

for some deformations, they would seem to be too restrictive to impose as a general

constitutive requirement. In particular, (7.18) implies that the plastic strain rate

sym(F oF —1) is zero whenever the plastic spin skw(F,,F 1) is zero, while (7.22)

implies that the plastic strain rate Dp is zero whenever the plastic spin W is zero.

7.5. Equivalence of the bounds on the plastic spin

The bounds (7.16) and (7.21) on the plastic spin involve the tensors sym (F oFp 1) and
skw (F oFy 1) and the tensors 5,, and W,, respectively. Recall that these are pairs of

preferred plastic strain rate and plastic spin tensors for the flow rules in Class I. It is
of some interest to consider analogous bounds on the plastic spin involving the
preferred measures for Classes II and III:

|2, <o|sym(F,F;1)]. (7.23)

and

12, < (-p;“) ~ |6, " (1.24)

We claim that for small elastic shear strains, the bounds (7.16), (7.21), (7.23), and
(7.24) on the plastic spins are approximately equivalent if the coefficients ay, @&y, a3,
and a3 are on the order of unity. From this result and the discussion at the end
of Section 7.2, we may conclude the following. If the material is such that one of
the aforementioned bounds holds with the appropriate coefficient o on the order of
unity, then for small elastic shear strains the Classes II and III are approximately
equivalent.

The remainder of this section is devoted to a proof of the above claim. First note
that by the inequality (6.14), the bound (7.23) implies the bound (7.16) with
a; =a,+ 1. Conversely, by the inequality (6.15), the bound (7.16) implies (7.23) with
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o, =ay+ 1. And in either case o is on the order of unity iff o, is. Note that these

results hold for arbitrary elastic strains.
For the remainder of this discussion we assume small elastic shear strains. Then,

as noted previously, the bound (7.16) with @, on the order of unity implies the
approximation (7.12), for D,, though not necessarily the approximation (7.12), for
W,. However, the approximation (7.14) for W), does hold, and the use of (7.16),
(7.15), and (7.12); in this approximation yields " Wp " < (al + 2| Ee )“[5,, ”
(approximately), so- that (7.21) holds with & ~ a;. Conversely, since the bound
(7.21) with &@; on the order of unity also implies (7.12);, use of (7.21), (7.15), and
(7.12); in the approximate formula (7.20) for skw(f-' ofFp 1) yields (7.16) with a ~ @ .
Thus we have established the equivalence of the bounds (7.16), (7.21), and (7.23).
Next, suppose that the bound (7.23) holds with a; on the order of unity. Since this
implies the bound (7.16) with @, on the order of unity, which in turn implies the
approximation (7.12); for 5p, use of (7.12), in (7.23) yields (7.24) with a3 = as.

Finally, suppose that the bound (7.24) holds with a3 on the order of unity. To
complete the proof of the claim, we show that this condition implies the bound
(7.16) with a; = a3 + 1. By the inequality (6.14), we see that (7.24) implies

i (Bors )| < s (22) " 8] + from(ors )]

Then the desired result follows provided that we can use the approximation (7.12);
for D,. However, we have not yet shown that (7.12), follows from (7.24) (with a3 on
the order of unity), so it remains to establish this result. From the approximation

(7.13) for [),, and the identity (6.1), we obtain
sym(F,,Fp”l) + E.My, [sym(F,,Fp”‘)] — My, [sym(Fpr“l)]Ee

~2/3 _
~ (%‘S) Dp — EQ, +Q k.. @)

Since, by (A.7), ”Mv,, [sym(Fpr‘ 1)]” < " sym(F,,Fp‘ 1) ", we see that

E:My, [sym(Fpr"l)] — My, [sym(Fpr'l)]Ee < 2||Ee||-”sym(f-',,F;‘)".

And by (7.24),

—E.Q IARET
| ~Eep +@pEc] < 20Eel-[25] < 205( =5 |5,

Thus, for small elastic shear strains, the terms involving £, on the left side of (*) are
small relative to sym (f—' oF '). If, in addition, o is on the order of unity, then the

e
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terms involving £, on the right side of (*) are small relative to (or/ o) 35,,. The
approximation (7.12), for D, follows, which completes the proof of the claim.

8. Inconsistent flow rules

In view of the polar decompositions F, = R,U, = V,R,, some authors have cho-
sen to describe the evolution of F, by means of separate evolution equations for R,
and either U, or V). In this section we discuss some inconsistencies in certain flow
rules of this type. In the next section we consider a consistent class of flow rules
described by evolution equations for V, and R,.

We begin by noting that flow rules of the form

UpU; ' = Ly(S), R,=1I 8.1)

are occasionally encountered in the literature. Since R, = I implies Fp = Up = V),
the flow rule (8.1) can just as well be written as

VoV, ! = Ly(S), R, =1 (8.2)
More generally, one could consider a class of flow rules of the form

VoV, = Ly(S), Q, = Wy(S). (8.3)

Recalling that Q, = R RT and that R, =1 initially, we see that (8.3) reduces to (8. 2)
if the function W, = 0 Since detV, = detU, = 1, the tensors V,,V and U,,U
are deviatoric. Also note that V/ pV, and U,,Up are generally not symmetric. Thus
the range of the function £, in (8 1)-(8.3) should be the set of all deviatoric, second-
order tensors.

It turns out that the (equivalent) flow rules (8.1) and (8.2) are inconsistent with the
assumption that F, (and hence U, and V}) is not a state variable. The same conclu-
sion holds for all flow rules of the form (8.3), regardless of the choice of the skew
function W,. Indeed, the inconsistency is inherent in the relation

VoV ! =£(©S) or  UpUy' =Ly(S) (8.4)

itself, and the following discussion is independent of any constitutive assumptions
on the plastic spin.

First, consider the evolution equation (8.4), for V,. If we set £+ = symL, and
L, = skwL,, then (8. 4), is equivalent to the condltlons

sym(VoV, ") =£5S),  skw(VoV,') = £5(5). 8.5)




1152 M. Scheidler, T.W. Wright | International Journal of Plasticity 19 (2003) 1119-1165

Since the tensor V V-1 is deviatoric, so is sym( VoV, ’) From the algebraic identity
(6.3) with B = Vp and A=V, we see that the skew part of V V, l'is determined by
V,, and the symmetric part of V Vo ! through the compatlblhty condltlon

skw(V,, V;l) =My, [sym(Vp V;')]. (8.6)
When (8.5) is substituted into the compatibility condition (8.6), we obtain

£;(S) =My, [c;(S)]. ®8.7)

The left-hand side of (8.7) depends only on the state variables S, whereas the right-
hand side also depends nontrivially on V),.!® This is a contradiction since V,, does not
belong to the list S of state variables. It follows that (8.4), is inconsistent with the
assumption that V, zs not a state variable. This is a consequence of the fact that the
skew part of V V l'is determined by V, and the symmetric part of V,,V through

the compatlblhty condltlon (8.6).

Similarly, the evolution equation (8.4), is inconsistent with the assumption that Uy, is
.

not a state variable. This is a consequence of the fact that the skew part of U pU, " 1s
determined by U, and the symmetric part of U,,U ~! through the compatlblhty

condition (6.7).
The inconsistency in the evolution equation (8.4); for V), could be eliminated by

allowing £, to depend on V,, so that
VoV, = L,(S, Vp). (8.8)

However, in view of the compatibility condition (8.6), we are only free to postulate a
constitutive relation for the symmetric part of V,V,; 1. Thus the function L, in (8.8)
cannot be prescribed arbitrarily but instead must satisfy the compatibility condition

skw.L,(S, V) = My, [symL,(S, V,)]. ®8.9)

Similarly, the inconsistency in the evolution equation (8.4), for U, could be
eliminated by allowing £, to depend on U,, so that

UpU; " = L,(S, Up). (8.10)

18 The right-hand side of (8.7) is independent of V, iff [,;'(S) is spherical, in which case
My, [C;(S)] = 0; see Appendix A. Also, since L;(S) is deviatoric, it is spherical iff it is 0. It follows that
the right-hand side of (8.7) is independent of V,, iff [,;r(S) and £, (S) are both 0, ie., if £,(S)=0, in
which case (8.4); implies that V,, is constant.
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However, in view of the compatibility condition (6.7), we are only free to postulate a
constitutive relation for the symmetric part of UpU, L. Thus the function L, in (8.10)
cannot be prescribed arbitrarily but instead must satisfy the compatibility condition

skwi,(S, Up) = My, [symL,(S, U,)]. (8.11)

This result has been obtained previously by Nemat-Nasser (1990, 1992)' and (for
the special case where R, = I) by Obata et al. (1990).

The inconsistencies discussed above are not restricted to the choice of U, or V), as
the tensor measure of plastic stretch. Let the symmetric positive-definite tensor Gj
be a function of U, or V, (e.g., Gp = U’% or Gy = Vf,). Then analogous problems
arise for flow rules that postulate a constitutive relation for G,G, !, Indeed, by set-
ting B = G, and A= G, in the identity (6.3), we obtain the compatibility condition

skw(GpG;‘) =M, [sym(c';,,G;‘)], 8.12)

which shows that skw(G,,Gp“ 1) is completely determined by G, and sym (G,,G o l).

Note that this issue of compatibility does not arise for the skew part of the plastic
velocity gradient FpF 1, since F, is not necessarily symmetric.

We close this section with the following observation. For flow rules of the form
(8.8) or (8.10), we may impose the additional constitutive assumption that
skwL, = 0, equivalently, that V,V, ! or UpU," is symmetric for all motions, but in
this case the restrictions imposed by the compatibility condition (8.9) or (8.11) are so
severe that the flow rule is not physically reasonable. Indeed, consider (8.8) with

skwL, = 0. Then the compatibility condition reduces to 0 = Mvp[\'/,, v, l]. But by

(A.9), this holds iff V,, commutes with Ve V, I and hence with V,,. This implies that
the principal axes of V), are necessarily fixed on any time interval for which the principal
values of V,, are distinct. Since this restriction must hold regardless of any changes in the
principal axes of E, or T, the resulting flow rule is physically unreasonable.

9. Flow rules in Class IV

In this section we continue the approach of describing the evolution of £, by
separate evolution equations for V, and R,. By differentiating the polar decomposi-
tion F,= V,R,, we obtain the kinematic relation

FoF ' =V V1 + V0,V (9.1)

19 However, he appears to conclude from his results that no constitutive relation needs to be specified
for the plastic spin. This is not true in general, although as discussed in Section 4.6, it would be appro-
priate for isotropic materials with only scalar internal variables.




1154 M. Scheidler, T.W. Wright | International Journal of Plasticity 19 (2003) 1119-1165

This suggests a class of flow rules of the form
VoV, ' = L,(S, V), Q, = Wy(S). 92)

As noted in the previous section, the dependence of £, on V,, cannot be omitted if,
as assumed here, V), is not a state variable. Furthermore, only the symmetric part of
the function £, can be prescribed arbitrarily; the skew part of £, is determined by

the compatibility condition (8.9).

The issue of compatibility of the skew part of £, can be avoided if we replace
(9.2), by a constitutive relation for the symmetric part of V,V ! only. And since we
are free to assume that sym(f/,, V, 1) is independent of V), we consider a class of
flow rules of the form

Class IV:  sym(V,V;') =Dy(S), = Wy(S). | 9.3)

This class of flow rules is of the general form (3.4) with preferred measure of plastic
strain rate D, = sym(Vp v, ') and preferred measure of plastic spin W, = Q. Thus

the first criterion in Section 3 is satisfied. From (9.3); and the compatibility condi-
tion (8.6), we see that the skew part of V,V !'is given by

skw(V,, v,;') =My, [D,(S)]- (9.4)

From (9.3) and (9.4) it follows that the flow rules in Class IV are of the form (9.2)
with

L,(S, V) = Dy(S) + My, [D,(S)]. 9.5)

Of course, not every flow rule of the form (9.2) belongs to Class IV, since (9.2)
allows for the possibility that sym( V,, Vo, ’) depends on V,, as well as the state variables.

The main properties of flow rules in Class IV are:

1. Classes I and IV are mutually exclusive.

2. In general, Classes II and IV are neither mutually exclusive nor equivalent,
that is, they have some but not all flow rules in common. Isotropic materials
with only scalar internal variables are an exception, since Classes II and IV
coincide for this special case.

Classes III and IV are mutually exclusive.

The flow rules in Class IV satisfy the third criterion in Section 3.

For those flow rules in Class IV which do not belong to Class II, the plastic
stress power generally depends on the plastic stretch V), as well as the state

variables.

nwhw
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In view of this last result, Class IV would seem to be of limited interest. The
remainder of this section is devoted to proving the above results.

First, recall that for flow rules in Class I, Q, depends on the plastic stretch V,, as
well as the state variables (see Section 6). Since such a flow rule cannot belong to
Class IV, the Classes I and IV are mutually exclusive. This is the first result above.

To establish the second result, note that the flow function W, in (9.3) may be
chosen to be identically zero, yielding a subclass of flow rules for which

sym(\'/pv,;l) = D,(S), Q,=0. 9.6)

Likewise, referring to the relations (4.6) characterizing flow rules in Class II, we may
take the flow function W, to be identically zero, yielding a subclass of flow rules for

which

0. 0.7

sym(F,F;") = Dy(S), Q,

And since Q, = 0 implies R, = I and hence F, = U = V), it follows that the sub-
class of flow rules in Class IV for which ©, = 0 coincides with the subclass of flow
rules in Class II for which Q, = 0. In particular, for isotropic materials with only
scalar internal variables, Q, is necessarily zero for flow rules in Classes II-IV (see
Section 4.6), so Classes II and IV coincide for this special case.

To show that there are flow rules in Class IV that do not belong to Class II, and
also to establish the other results above, we need the following kinematic identities.
The symmetric part of (9.1) yields the relation

sym(FpF;l) = sym(VpV;l) + sym(Vpﬂpr"). (9.8)

By taking the skew part of (9.1) and using the compatibility condition (8.6), we find
that

skw(F,,F;l) =My, [sym(v,,v;‘)] n skw(Vpﬂpr_l). | 9.9)

When these relations are substituted into the expressions (5.3)+5.4) for bp and Wp,
we obtain relations of the form

D, = ﬁﬁ(sym(VpV,,‘l), Q,,C., V,,),
9.10
W, =W (sym(\'/,,v;‘), Q,.C.. v,,), 10
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where the dependence on V,, is nontrivial.

For a flow rule in Class IV, sym(Vp vV, l) and Q, depend only on the state variables,
but by (9.8) we see that sym (F oF 5 1) will generally depend on V), as well as the state

variables.2® Such a flow rule does not belong to Class II. It follows that Classes II
- and IV are neither equivalent nor mutually exclusive, that is, they have some but not
all flow rules in common. As observed above, isotropic materials with only scalar
internal variables are an exception to this statement.

Now consider the third and fourth results above. For a flow rule in Class IV, (9.9)
implies that skw (F oF l) depends on V,, as well as the state variables. And as noted

above, sym (F,,F 5 1) depends at most on V), and the state variables. Consequently,

F,F 5 I'also depends only on V, and the state variables. Thus, like Classes II and III, the
flow rules in Class IV are of the general form (4.10). In particular, the third criterion in
Section 3 is satisfied. From (9.10) it follows that D, and W, depend on V,, as well as
the state variables for flow rules in Class IV. Since D, depends only on the state
variables for flow rules in Class III, it follows that Classes IIT and IV are mutually
exclusive. Thus the third and fourth results stated above are established.

To prove the fifth result, we must first determine which flow rules in Class IV do
not belong to Class II. We have already shown that the flow rules in Class IV for
which €, = 0 belong to Class II; we claim that these are the only flow rules with this
property. Indeed, from (4.6), (9.3), and (9.8), we see that a flow rule in Class IV

belongs to Class II iff sym(V,,Q Ve 1) is a function of the state variables S only.

And since Q, depends only on the state variables, this can occur iff V, and Q,
commute so that the V, and V,”! terms cancel, in which case
sym(VpﬂpV; 1) = sym(Q,) = 0. However, if ©, is not identically zero for all
motions, then for flow rules in Classes II-IV we cannot require that V), and €2,
commute for all motions, since this would imply a dependence of , on V. Thus
Classes II and IV coincide only on the subclass of flow rules with the property that

Q,, is identically zero for all motions.
Next, from (3.1) and (9.1) we see that the plastic stress power is given by

prP, = CT: V! +C.T:V,Q,V, " (9.11)

For flow rules in Class IV, the first term on the right depends only on the state
variables, whereas the second term will generally depend on V,, as well, unless V),
and Q, commute. But as discussed in the previous paragraph, this latter condition
can hold for all motions iff the flow rule is such that Q, is identically zero, in which
case the flow rule belongs to Class II. Thus the plastic stress power generally

20 By (9.8) we also see that for flow rules in Class II, sym(V,, v, 1) generally depends on V,, as well as
the state variables. '
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depends on the plastic stretch V, for flow rules in Class IV that do not belong to
Class 11.2! This conclusion holds even for small elastic shear strains and, in parti-
cular, even when the (approximately equivalent) bounds on the plastic spin dis-
cussed in Section 7.5 hold. In this case the approximation (7.12), for D, in terms of

sym(F,,Fp“ ‘) is valid, and the approximation

pRP;, & ('%R)w[f‘: sym(VpV;I) +T: sym(VpﬂpV;‘)] (9.12)

for the plastic stress power follows from (3.12), (7.12)y, and (9.8). Arguing as above,
we conclude that even for small elastic shear strains, the plastic stress power gen-
erally depends on the plastic stretch V,, for flow rules in Class IV that do not belong
to Class II.

We close this section by noting the following kinematic relation for sym(Vp v, 1)

in terms of sym(I;',,Fp"), skw(F,,F,',‘l), and V;:
sym(VpV;‘) = sym(Fpr‘l) + sym{V,,Mvp [sym(Fpr")] Vp“]

- Sym{Vpskw(FpF;‘)V;l}. (9.13)

This is obtained by solving (6.1) for Q, and substituting the result into (9.8). For a

flow rule in Class L, sym(F,,F o ') and skw(/—' oF 1) depend only on the state vari-

ables, so by (9.13) it follows that sym(V,, V, 1) depends on V, as well as the state
variables for flow rules in Class I.

10. Summary and discussion

We have studied four representative classes of flow rules that satisfy the first and
third criteria listed in Section 3. Each class is defined by requiring that some pre-
ferred measures for plastic strain rate and plastic spin depend only on the state
variables. The plastic slip F, is not regarded as a state variable. For the flow rules in
each class the plastic velocity gradient FoF > I depends at most on the state variables
and the plastic slip. In fact, for Classes II-IV it was shown that the dependence of

FoF 5 ! on F, arises only through the left plastic stretch V, =,/ FprT , while for Class
I the dependence of FoF Py ! on F, is absent altogether, by assumption.

21 Note that even for those flow rules in Class IV which do belong to Class 11, i.e., those flow rules
satisfying (9.6), the plastic stress power may still depend on V), unless the material is elastically isotropic
(see Section 4.6).
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We have shown that these four classes of flow rules are mutually exclusive, with
the exception that Classes II and IV coincide on the subclass of flow rules for which
the plastic spin Q,, is identically zero. We also found that all flow rules in Classes I
and III satisfy our second criterion, namely, that the plastic stress power depends
only on the state variables. Flow rules in Classes II and IV generally violate this
criterion because the plastic stress power generally depends on V), as well as the state
variables. However, for materials that are elastically isotropic, the criterion on the
plastic stress power is indeed satisfied by all flow rules in Class II. On the other
hand, even for elastically isotropic materials, the only flow rules in Class IV that
satisfy the criterion on the plastic stress power are those for which Q, is identically
zero. Since these flow rules also belong to Class II, Class IV would seem to be of
limited interest.

For small elastic shear strains, we showed that Classes II and III are approxi-
mately equivalent provided that one of the four (approximately equivalent) bounds
on the plastic spin discussed in Section 7.5 hold. In this case we may also conclude

that

1. For all flow rules in Class II (with no restrictions on the material symmetry),
the plastic stress power depends (approximately) only on the state variables,

2. For an isotropic material with only scalar internal variables, given any flow
rule in one of the Classes I-1II there are corresponding flow rules in the other
two classes that produce, either exactly or approximately, the same Cauchy
stress, other constitutive relations being the same.

The first result follows from the approximate equivalence of Classes II and III and
the fact that flow rules in Class III satisfy the criterion on the plastic stress power
without any restrictions. Regarding the second result, it was shown in Section 4.6
that for isotropic materials with only scalar internal variables, there are corre-
sponding flow rules in Classes I and II that produce the same Cauchy stress,
assuming all other constitutive relations are the same. Then the second result above
follows from the approximate equivalence of Classes II and III.

The results in the preceding paragraph are generally not valid if only small elastic
shear strains are assumed, that is, with no bounds on the plastic spin. Such bounds
are not implied by any of the other criteria considered in this paper, nor do they
follow from the plastic dissipation inequality (Scheidler and Wright, 2001), at least
not without additional assumptions. On the other hand, there would seem to be no
physical basis for plastic spin unaccompanied by changes in plastic strain, so the
bounds on the plastic spin discussed in Section 7 do not seem unreasonable, even with
the requirement that the coefficients ¢; in these bounds be on the order of unity. Such
bounds might be regarded as an additional criterion to be satisfied by all flow rules.

For reasons discussed above, of the four classes of flow rules introduced here only
the first three would seem to be of interest. However, the criteria considered in this
paper do not lead to a preference for one of these three classes over the others. The
exception to this statement is that for materials with anisotropic elastic response,
Class II may be less preferable since the plastic stress power depends on the plastic
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stretch, although as discussed above this dependence is negligible if the elastic shear
strains are sufficiently small and the plastic spin is bounded appropriately. In a fol-
low-up paper we plan to examine other criteria that would be of assistance in
selecting one of these classes over the others.

Appendix A

In this appendix we define the fourth-order tensors L4 and M, discuss some of

their properties, and give explicit formulas for L ((H] and M ([H].%? Here A denotes a
second-order, symmetric, positive-definite tensor, while H is an arbitrary second-
order tensor unless specified otherwise.

The fourth-order tensor L4 is characterized by the property that the second-order
tensor X=IL4[H] is the unique solution of the tensor equation

AX+XA=H. (A.1)

In other words, L4 maps the tensor H on the right-hand side of Eq. (A.1) to the
solution X of (A.1). Relative to a principal basis for 4, the components of the solu-
tion X of (A.1) are X; = Hy/(a; + a;), where a;>0 are the principal values (eigen-
values) of A. Thus the ij component of L4H] is

Hy

a; + aj ’ (A-2)

(LlH])y=

relative to a principal basis for A. It follows that L, maps symmetric tensors to
symmetric tensors and skew tensors to skew tensors.

The fourth-order tensor M 4 is characterized by the property that the second-order
tensor X=M (H] is the unique solution of the tensor equation

AX+ XA = AH — HA. (A.3)

In other words, M, maps the tensor H on the right-hand side of Eq. (A.3) to the
solution X of (A.3). Since (A.3) is an equation of the form (A.1) with H replaced by
AH—HA, it follows that

M 4[H] = L[4H — HA]. (A4)

Relative to a principal basis for 4, the ij component of M [H] is

a;— aj
a; + a;

(M4[H]))= Hj. (A.5)

22 §ee Scheidler (1994) for the derivation of results stated here without proof as well as for other com-
ponent-free formulas.
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If H is symmetric (skew), then AH—HA is skew (symmetric), so by (A.4) and the
properties of [ 4 noted above, or directly from (A.5), we see that M, maps sym-
metric tensors to skew tensors and skew tensors to symmetric tensors. From (A.5) it

follows that

Mo4[H] = M H], Vo> 0. (A.6)

The norm of a tensor H, ||H||, is defined by (6.12). Since the principal values ; are
positive, the coefficient of Hj; in (A.5) has absolute value less than one, and thus

IM4[H]| < IH) A7)

for any tensor H and any symmetric positive-definite tensor 4. Strict inequality

holds in (A.7) whenever H # 0.
Since X =0 is the unique solution of (A.1) when H=0, it follows that

L H] =0 iff H=0. (A.8)

When this result is applied to (A.4), we see that
M[H]=0 iff AH=HA. | (A.9)

For any orthogonal tensor @, the tensor equation (A.1) is equivalent to
(0407)(0xQ") + (0X0")(Q4Q") = QHQ',

so it follows that QXQ = Ly AQr[QHQT]. And since X=1 4 H], we see that
OLHIQ" =L,y [OHOT] (A.10)

Then (A.4) implies the analogous property (6.2) for M. In other words, L 4[H] and
M 4[H] are isotropic functions of 4 and H. It is easily shown that

L1 [H] = AL4[H)A, M i [H] = —M4[H]. (A.11)

The component formula (A.5) can be used to show that M [H] is in fact inde-
pendent of A iff H is spherical, in which case M4H]=0. More precisely,
M [H]=Mp[H] for every symmetric positive definite 4 and B iff H is spherical. In
view of (A.6), this conclusion remains valid if we add the restriction det4 =detB=1.

Let B be any symmetric tensor. To derive the relation

skw(BA™') = M[sym(BA™")] (A.12)

used in the proof of the compatibility conditions (6.7) and (8.6), first verify the identity
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Askw(BA™') + skw(BA™')A = Asym(BA™') — sym(BA™')4. (A.13)

Then observe that this is an equation of the form (A.3) with X=skw(BA~!) and
H=sym(BA~1), so the solution X=M_J[H] of (A.3) yields (A.12).

The simple component formulas (A.2) and (A.5) are only valid relative to a prin-
cipal basis for 4. Next, we list some of the simpler component-free formulas for
L4[H] and M 4[H].?* Let 14, 114, and III, denote the principal invariants of 4, and
define the symmetric tensor?*

A=LI-A. (A.14)

Then f_f is coaxial with 4 and has principal values @; = a;+ a; > 0 (ijk distinct).
Thus A is also positive-definite with

detd = L1, — I, = (a1 + @2)(az + a3)(az + a1) > 0. (A.15)
When H is a skew tensor, L4 H] is given by the simple formulas

(detj)m,,[H] — AHA
= [(L)*~1I4JH — (4°H + HA®).

(A.16)

From (A.16); and (A.4) it follows that for skew H, M 4[H] is given by the formulas

(det;l)MA[H] = A(AH — HA)A

= AHA — AHA? + I,(HA? — A*H) + (1)*(4H — HA).
(A.17)

In fact, it can be shown that (A.17) holds for any (not necessarily skew) tensor H.2
The formula (A..16) for L ,[H] does not hold for arbitrary H or even for symmetric
H. However, it can be shown that for any tensor H,

23 Unlike the previous results, the component-free formulas listed here are valid only for tensors on a
three-dimensional vector space.

24 The notation A for IJ—A, which is consistent with the notation in Scheidler (1994), is not used
outside this Appendix. In particular, the tilde on the tensors T, ﬁp, and W,, in the main body of the paper
is unrelated to the definition (A.14).

25 The top formulas in (A.16) and (A.17) are due to Scheidler (1994). The bottom formula in (A.16) is
due to Sidoroff (1978) and Guo (1984). The bottom formula in (A.17) is due to Mehrabadi and Nemat-
Nasser (1987).
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LalH) = 5 4™ (H+ M[H]) = 5 (H ~ M/ [HD A"

2" N . (A.18)
= (A7 H+ HA™') + 2 (A7 M[H] - Ma[HJA ™).

Since the formulas (A.17) for M [ H] also hold for arbitrary H, they may be used in
(A.18) to obtain component-free formulas for L 4[H] for arbitrary H.

Appendix B
In this Appendix we complete the derivation of the kinematic relations (5.5) and
(5.6) for sym(F F; ") and skw(F,F, "), give an alternate proof of the fundamental
kinematic identity (6.1), and establish some properties of flow rules in Class III that
were stated without proof in Section 4.2.
Bl. Derivation of (5.5) and (5.6)
The formula (5.3) for ﬁ,, is a tensor equation of the form (A.1) with
A=C, X = sym(FoF,;"),
H = 2/.3,, — {C,skw(FpF;l) — skw(F,,Fp”')Ce].

This equation has the solution

sym(F,,F,,") = L¢,[H]
=2l [[5,,] “le, [c,skw(/l',,/-';') _ skw(F,,Fp‘l)Ce],

which, by (A.4) with A=C, and H = skw (F,,Fp“), yields the solution (5.5).
Similarly, the formula (5.4) for W,, is a tensor equation of the form (A.1) with

A=c,, X = skw(£,F;"),
H=2W,- {C,sym(FpF;‘) - sym(FpF;’)Ce}.
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This equation has the solution

sym(FpF;l) = L¢ [H]
= 2[LC¢[WP] —L¢, [Cesym(F ,,Fp—l) - sym(Fpr‘l)Ce]s

which, by (A.4) with A=C, and H = sym (F' oF 5 1), yields the solution (5.6).

B2. Alternate proof of (6.1)

On multiplying the kinematic relation (9.1) on the right by V,, we obtain

v, = (F',,F;‘)v,, V2, =V, (F,,F;')T+ﬂ,,v,,, (B.1)

where the second expression follows by taking the transpose of the first and using
the fact that V is symmetric. On decomposing F pF into its symmetric and skew
parts and then rearranging (B.1),, we obtain the tensor equation

Volskw(£,F;") - Q,} +{skw(£oF;") - a,}v,

= psym(Fpr_l) - sym(F,,Fp“)Vp.

This is an equation of the form (A.3) with A=V, X =skw F,,F,;‘l) —Q,, and
H= sym(/-',,/-',; 13. The solution X=M _([H] of (A.3) yields (6.1).

B3. Some properties of flow rules in Class II1

In Section 4.2 we stated that for flow rules in Class III, the tensors sym (F oF 5 ‘),
skw(f-' oFy l), and W, depend on the plastic stretch V), as well as the state variables.
We prove these results here. The fact that sym(/-',,F "l) and skw(F' ofF ”1) depend

only on V, and the state variables is the basis for the conclusmn that all flow rules in
Class III can be expressed in the form (4.10), i.e., that F pF “1-¢ (S Vo). As noted
in Section 4.2, this implies that the flow rules in Class III satlsfy the third criterion in
Section 3.

On substituting the expression (9.1) for F oFp !into the definition (B.2), of 5,,, we
find that

Sym(CeVpr_l) =z, L =0,— sym(CeVpﬂ ,,v;‘). (B.2)

As shown below, the equation on the left may be solved for V, Vo in terms of &,
U,, and V;:
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VoV, =2V, ULy, [U;'E U U (B.3)

On taking the symmetric part of this relation and using the definition (B.2) of X , we
obtain a relation of the general form

sym(VoV;") = X1(Ue, Vi) [ By | - B(Ue Vi) [25) (B.4)

in which sym (Vp V, ') depends linearly on [7,, and Q, and nonlinearly on U, and
Vp.
pNow consider a flow rule in Class III. By assumption, 5,, and Q, depend only on
the state variables. And since U, is a state variable, it follows from (B.4) that
sym(V,V ;') depends only on V, and the state variables. This result, the relations
(9.8) and (9.9), and the assumptlon that Q, depends only on the state variables
imply that sym(F oF 5 12 and skw (F oF, 3 also depend on V), and the state variables
for flow rules in Class I. Then by (5.4), we see that W depends on V, and the state

variables.
To derive (B.3), first expand the left-hand side of (B.2); to obtain the tensor

equation
AR (v,,v*) C,=2%.

This is not an equation of the general form (A.1) for the unknown V,, vV, ! because of
the presence of the transpose. We can get around this difficulty by multiplying both
sides of this equation on the left and the right by U,~'I and then rearranging to give

(UeVpUe)(UeV,,U,)_l+(UeV,,U,)—l(U,VpUe) =2U7's U,
This is an equatlon of the form (A.1) with A=(U,V,U)~", X= Ue\'/,,Ue, and
H=2U;'T U'. The solution is X=L4[H], or
U.V,U, = 2'L(U,v,,v,)“[U—‘z U]
= 2UV,ULu,u[U;'E U;'(UV, V),

where the bottom relation follows from (A. 11)1 with 4=U,V,U,. After multiplying
on the left by U,™" and on the right by U, ™'V, we obtain (B 3).
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